基于自适应傅里叶分解的HRTF分解与压缩

Yong Fang, Mengjie Shi, Qinghua Huang, Liming Zhang
{"title":"基于自适应傅里叶分解的HRTF分解与压缩","authors":"Yong Fang, Mengjie Shi, Qinghua Huang, Liming Zhang","doi":"10.1049/CP.2017.0120","DOIUrl":null,"url":null,"abstract":"Head-Related Transfer Function (HRTFS) is the key to many applications in spatial audio. Its large amount of data makes it difficult to make real-time implementation. Reducing HRTF data is necessary and important. In this paper, we apply a new developed signal decomposition theory, named Adaptive Fourier Decomposition (AFD), to decompose and compress HRTF data, comparing with traditional Fourier's convergence property and PCA's compression property. Simulation results show that the proposed AFD-based decomposition and compression method enables evident performance improvement for HRTF.","PeriodicalId":424212,"journal":{"name":"4th International Conference on Smart and Sustainable City (ICSSC 2017)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The decomposition and compression of HRTF based on adaptive fourier decomposition\",\"authors\":\"Yong Fang, Mengjie Shi, Qinghua Huang, Liming Zhang\",\"doi\":\"10.1049/CP.2017.0120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Head-Related Transfer Function (HRTFS) is the key to many applications in spatial audio. Its large amount of data makes it difficult to make real-time implementation. Reducing HRTF data is necessary and important. In this paper, we apply a new developed signal decomposition theory, named Adaptive Fourier Decomposition (AFD), to decompose and compress HRTF data, comparing with traditional Fourier's convergence property and PCA's compression property. Simulation results show that the proposed AFD-based decomposition and compression method enables evident performance improvement for HRTF.\",\"PeriodicalId\":424212,\"journal\":{\"name\":\"4th International Conference on Smart and Sustainable City (ICSSC 2017)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"4th International Conference on Smart and Sustainable City (ICSSC 2017)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/CP.2017.0120\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"4th International Conference on Smart and Sustainable City (ICSSC 2017)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/CP.2017.0120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

头部相关传递函数(HRTFS)是空间音频中许多应用的关键。其庞大的数据量使其难以实时实现。减少HRTF数据是必要和重要的。本文采用一种新的信号分解理论,即自适应傅立叶分解(AFD),对HRTF数据进行分解和压缩,比较了传统傅立叶的收敛性和主成分分析的压缩性。仿真结果表明,提出的基于afd的分解压缩方法能明显提高HRTF的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The decomposition and compression of HRTF based on adaptive fourier decomposition
Head-Related Transfer Function (HRTFS) is the key to many applications in spatial audio. Its large amount of data makes it difficult to make real-time implementation. Reducing HRTF data is necessary and important. In this paper, we apply a new developed signal decomposition theory, named Adaptive Fourier Decomposition (AFD), to decompose and compress HRTF data, comparing with traditional Fourier's convergence property and PCA's compression property. Simulation results show that the proposed AFD-based decomposition and compression method enables evident performance improvement for HRTF.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信