信噪比不匹配条件下猛禽码在BIAWGN信道上的性能研究

Hussein Fadhel, Amrit Kharel, Lei Cao
{"title":"信噪比不匹配条件下猛禽码在BIAWGN信道上的性能研究","authors":"Hussein Fadhel, Amrit Kharel, Lei Cao","doi":"10.1109/WCNC45663.2020.9120480","DOIUrl":null,"url":null,"abstract":"Accurate estimation of the channel signal to noise ratio (SNR) is essential for belief propagation (BP) decoding to operate optimally. Incorrect estimation of the channel SNR is known as SNR mismatch and can lead to serious degradation in BP decoding performance especially when a code is operating near its decoding threshold. We analyze the asymptotic performance of Raptor codes under SNR mismatch on the binary input additive white Gaussian noise (BIAWGN) channel using discretized density evolution (DDE). We provide the decoding thresholds of Raptor codes for a wide range of SNR mismatch values. Our results show that overestimation of channel SNR is slightly more detrimental than underestimation for lower levels of SNR mismatch, while, underestimation becomes more detrimental as the mismatch increases. Finally, we use DDE-based optimization to design SNR mismatch tolerant output degree distributions.","PeriodicalId":415064,"journal":{"name":"2020 IEEE Wireless Communications and Networking Conference (WCNC)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Performance of Raptor Codes on the BIAWGN Channel in the Presence of SNR Mismatch\",\"authors\":\"Hussein Fadhel, Amrit Kharel, Lei Cao\",\"doi\":\"10.1109/WCNC45663.2020.9120480\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate estimation of the channel signal to noise ratio (SNR) is essential for belief propagation (BP) decoding to operate optimally. Incorrect estimation of the channel SNR is known as SNR mismatch and can lead to serious degradation in BP decoding performance especially when a code is operating near its decoding threshold. We analyze the asymptotic performance of Raptor codes under SNR mismatch on the binary input additive white Gaussian noise (BIAWGN) channel using discretized density evolution (DDE). We provide the decoding thresholds of Raptor codes for a wide range of SNR mismatch values. Our results show that overestimation of channel SNR is slightly more detrimental than underestimation for lower levels of SNR mismatch, while, underestimation becomes more detrimental as the mismatch increases. Finally, we use DDE-based optimization to design SNR mismatch tolerant output degree distributions.\",\"PeriodicalId\":415064,\"journal\":{\"name\":\"2020 IEEE Wireless Communications and Networking Conference (WCNC)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Wireless Communications and Networking Conference (WCNC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCNC45663.2020.9120480\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Wireless Communications and Networking Conference (WCNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCNC45663.2020.9120480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

信道信噪比(SNR)的准确估计是信念传播(BP)译码实现最佳运行的关键。信道信噪比的不正确估计被称为信噪比失配,它会导致BP解码性能的严重下降,特别是当码在其解码阈值附近运行时。利用离散密度演化(DDE)分析了在二值输入加性高斯白噪声(BIAWGN)信道上信噪比不匹配的Raptor码的渐近性能。我们为广泛的信噪比失配值提供了Raptor代码的解码阈值。研究结果表明,当信噪比失配水平较低时,信道信噪比高估的危害略大于信道信噪比低估的危害,而当信噪比失配水平增加时,信道信噪比低估的危害更大。最后,我们使用基于dde的优化来设计信噪比容错输出度分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance of Raptor Codes on the BIAWGN Channel in the Presence of SNR Mismatch
Accurate estimation of the channel signal to noise ratio (SNR) is essential for belief propagation (BP) decoding to operate optimally. Incorrect estimation of the channel SNR is known as SNR mismatch and can lead to serious degradation in BP decoding performance especially when a code is operating near its decoding threshold. We analyze the asymptotic performance of Raptor codes under SNR mismatch on the binary input additive white Gaussian noise (BIAWGN) channel using discretized density evolution (DDE). We provide the decoding thresholds of Raptor codes for a wide range of SNR mismatch values. Our results show that overestimation of channel SNR is slightly more detrimental than underestimation for lower levels of SNR mismatch, while, underestimation becomes more detrimental as the mismatch increases. Finally, we use DDE-based optimization to design SNR mismatch tolerant output degree distributions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信