使用机器学习方法的可解释睡眠质量评估模型

Rock-Hyun Choi, Won-Seok Kang, C. Son
{"title":"使用机器学习方法的可解释睡眠质量评估模型","authors":"Rock-Hyun Choi, Won-Seok Kang, C. Son","doi":"10.1109/MFI.2017.8170377","DOIUrl":null,"url":null,"abstract":"This research presents a scheme for explainable sleep quality evaluation utilizing the heart rate based sleep index. In the proposed model, the global covering rule induction of LERS (Learning from Examples based on Rough Sets) is used to generate rules associated with sleep quality status, such as ‘Bad,’ ‘Normal,’ and ‘Good.’ These rules are used to interpret the three sleep statuses. To show the applicability of the proposed scheme, we construct a sleep quality evaluation model based on sleep intraday time-series data collected from 280 factory and office workers with Fitbit fitness trackers. An evaluation of the proposed model was provided through statistical cross validation experiments.","PeriodicalId":402371,"journal":{"name":"2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Explainable sleep quality evaluation model using machine learning approach\",\"authors\":\"Rock-Hyun Choi, Won-Seok Kang, C. Son\",\"doi\":\"10.1109/MFI.2017.8170377\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research presents a scheme for explainable sleep quality evaluation utilizing the heart rate based sleep index. In the proposed model, the global covering rule induction of LERS (Learning from Examples based on Rough Sets) is used to generate rules associated with sleep quality status, such as ‘Bad,’ ‘Normal,’ and ‘Good.’ These rules are used to interpret the three sleep statuses. To show the applicability of the proposed scheme, we construct a sleep quality evaluation model based on sleep intraday time-series data collected from 280 factory and office workers with Fitbit fitness trackers. An evaluation of the proposed model was provided through statistical cross validation experiments.\",\"PeriodicalId\":402371,\"journal\":{\"name\":\"2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MFI.2017.8170377\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MFI.2017.8170377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本研究提出了一种基于心率睡眠指数的可解释睡眠质量评估方案。在提出的模型中,使用LERS(基于粗糙集的示例学习)的全局覆盖规则归纳来生成与睡眠质量状态相关的规则,例如“坏”、“正常”和“好”。这些规则被用来解释三种睡眠状态。为了证明所提出方案的适用性,我们基于280名工厂和办公室员工的睡眠时间序列数据构建了睡眠质量评估模型。通过统计交叉验证实验对提出的模型进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Explainable sleep quality evaluation model using machine learning approach
This research presents a scheme for explainable sleep quality evaluation utilizing the heart rate based sleep index. In the proposed model, the global covering rule induction of LERS (Learning from Examples based on Rough Sets) is used to generate rules associated with sleep quality status, such as ‘Bad,’ ‘Normal,’ and ‘Good.’ These rules are used to interpret the three sleep statuses. To show the applicability of the proposed scheme, we construct a sleep quality evaluation model based on sleep intraday time-series data collected from 280 factory and office workers with Fitbit fitness trackers. An evaluation of the proposed model was provided through statistical cross validation experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信