在南半球寻找一个声音:全球有机碳的新记录?

GSA Bulletin Pub Date : 2022-12-05 DOI:10.1130/b36405.1
Ralf J. Weger, G. Eberli, Leticia Rodriguez Blanco, Max Tenaglia, P. Swart
{"title":"在南半球寻找一个声音:全球有机碳的新记录?","authors":"Ralf J. Weger, G. Eberli, Leticia Rodriguez Blanco, Max Tenaglia, P. Swart","doi":"10.1130/b36405.1","DOIUrl":null,"url":null,"abstract":"Variations in the carbon isotopic composition of carbonate and organic carbon (δ13Ccarb and δ13Corg) are generally used to record perturbations in the global carbon cycle, which are in turn closely linked to changes in climate. However, because of climate gradients on Earth, assignment of the “global” signal in ancient records is not straightforward. Here, we report the δ13C values of organic material in the Upper Jurassic to Lower Cretaceous sedimentary record of the Vaca Muerta Formation, situated in the Neuquén Basin, Argentina, which show similar patterns to those observed in several northern latitude basins. This record of δ13C values in the organic material differs from those measured in the early Atlantic Ocean, a record previously considered to be representative of the global values of organic carbon. As a result of the global synchronicity observed in the δ13C values of organic material from both northern and southern latitudes, we suggest that these patterns may represent the global record of δ13C values in organic material rather than those measured in the proto−Atlantic Ocean. The δ13C values of the organic components show a slight initial decrease of ∼2‰ in the early Tithonian (149−145 Ma) and then another decrease of ∼2‰ before reaching a minimum of −30.29‰ in the late Tithonian (145−143 Ma), followed by a gradual increasing trend throughout the Berriasian (143.1−137.7 Ma). The early Valanginian (137.7−135.5 Ma) was marked by a more substantial increase in δ13C values up to −23.46‰. These changes mirror those seen in Northern Hemisphere locations during the Late Jurassic and Early Cretaceous, where this perturbation has been termed the Volgian isotopic carbon excursion (VOICE). This difference in the Late Jurassic and Early Cretaceous δ13C values between the early Atlantic Ocean and the Neuquén Basin is interpreted to be the result of the climate gradient at the time, which was characterized by more humid conditions in high latitudes compared to dry conditions in the Atlantic Ocean basin.","PeriodicalId":242264,"journal":{"name":"GSA Bulletin","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Finding a VOICE in the Southern Hemisphere: A new record of global organic carbon?\",\"authors\":\"Ralf J. Weger, G. Eberli, Leticia Rodriguez Blanco, Max Tenaglia, P. Swart\",\"doi\":\"10.1130/b36405.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Variations in the carbon isotopic composition of carbonate and organic carbon (δ13Ccarb and δ13Corg) are generally used to record perturbations in the global carbon cycle, which are in turn closely linked to changes in climate. However, because of climate gradients on Earth, assignment of the “global” signal in ancient records is not straightforward. Here, we report the δ13C values of organic material in the Upper Jurassic to Lower Cretaceous sedimentary record of the Vaca Muerta Formation, situated in the Neuquén Basin, Argentina, which show similar patterns to those observed in several northern latitude basins. This record of δ13C values in the organic material differs from those measured in the early Atlantic Ocean, a record previously considered to be representative of the global values of organic carbon. As a result of the global synchronicity observed in the δ13C values of organic material from both northern and southern latitudes, we suggest that these patterns may represent the global record of δ13C values in organic material rather than those measured in the proto−Atlantic Ocean. The δ13C values of the organic components show a slight initial decrease of ∼2‰ in the early Tithonian (149−145 Ma) and then another decrease of ∼2‰ before reaching a minimum of −30.29‰ in the late Tithonian (145−143 Ma), followed by a gradual increasing trend throughout the Berriasian (143.1−137.7 Ma). The early Valanginian (137.7−135.5 Ma) was marked by a more substantial increase in δ13C values up to −23.46‰. These changes mirror those seen in Northern Hemisphere locations during the Late Jurassic and Early Cretaceous, where this perturbation has been termed the Volgian isotopic carbon excursion (VOICE). This difference in the Late Jurassic and Early Cretaceous δ13C values between the early Atlantic Ocean and the Neuquén Basin is interpreted to be the result of the climate gradient at the time, which was characterized by more humid conditions in high latitudes compared to dry conditions in the Atlantic Ocean basin.\",\"PeriodicalId\":242264,\"journal\":{\"name\":\"GSA Bulletin\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GSA Bulletin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1130/b36405.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GSA Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1130/b36405.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

碳酸盐和有机碳的碳同位素组成(δ13Ccarb和δ13Corg)的变化通常被用来记录全球碳循环的扰动,而这些扰动又与气候变化密切相关。然而,由于地球上的气候梯度,在古代记录中分配“全球”信号并不简单。本文报道了阿根廷neuquacimhan盆地Vaca Muerta组上侏罗统—下白垩统沉积记录中有机质的δ13C值,与北纬盆地的δ13C值相似。这一有机物质δ13C值的记录不同于早先在大西洋早期测量的记录,后者被认为是全球有机碳值的代表。由于观测到南北纬有机物δ13C值的全球同向性,我们认为这些模式可能代表有机物δ13C值的全球记录,而不是在原大西洋测量到的。有机组分的δ13C值在早梯东世(149 ~ 145 Ma)初期略有下降~ 2‰,在晚梯东世(145 ~ 143 Ma)达到最小值- 30.29‰,随后在整个berberasian (143.1 ~ 137.7 Ma)期间呈逐渐上升趋势。早瓦兰吉尼亚期(137.7 ~ 135.5 Ma) δ13C值上升幅度较大,达- 23.46‰。这些变化反映了北半球晚侏罗世和早白垩纪的变化,这种扰动被称为Volgian同位素碳偏移(VOICE)。早侏罗世和早白垩世早期大西洋与neuqusamn盆地之间的δ13C值差异被解释为当时气候梯度的结果,其特征是高纬度地区更为潮湿,而大西洋盆地则较为干燥。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finding a VOICE in the Southern Hemisphere: A new record of global organic carbon?
Variations in the carbon isotopic composition of carbonate and organic carbon (δ13Ccarb and δ13Corg) are generally used to record perturbations in the global carbon cycle, which are in turn closely linked to changes in climate. However, because of climate gradients on Earth, assignment of the “global” signal in ancient records is not straightforward. Here, we report the δ13C values of organic material in the Upper Jurassic to Lower Cretaceous sedimentary record of the Vaca Muerta Formation, situated in the Neuquén Basin, Argentina, which show similar patterns to those observed in several northern latitude basins. This record of δ13C values in the organic material differs from those measured in the early Atlantic Ocean, a record previously considered to be representative of the global values of organic carbon. As a result of the global synchronicity observed in the δ13C values of organic material from both northern and southern latitudes, we suggest that these patterns may represent the global record of δ13C values in organic material rather than those measured in the proto−Atlantic Ocean. The δ13C values of the organic components show a slight initial decrease of ∼2‰ in the early Tithonian (149−145 Ma) and then another decrease of ∼2‰ before reaching a minimum of −30.29‰ in the late Tithonian (145−143 Ma), followed by a gradual increasing trend throughout the Berriasian (143.1−137.7 Ma). The early Valanginian (137.7−135.5 Ma) was marked by a more substantial increase in δ13C values up to −23.46‰. These changes mirror those seen in Northern Hemisphere locations during the Late Jurassic and Early Cretaceous, where this perturbation has been termed the Volgian isotopic carbon excursion (VOICE). This difference in the Late Jurassic and Early Cretaceous δ13C values between the early Atlantic Ocean and the Neuquén Basin is interpreted to be the result of the climate gradient at the time, which was characterized by more humid conditions in high latitudes compared to dry conditions in the Atlantic Ocean basin.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信