自适应内预测滤波(AIPF)

Yuanfeng He, Qijun Wang, Xinge You, Duanquan Xu
{"title":"自适应内预测滤波(AIPF)","authors":"Yuanfeng He, Qijun Wang, Xinge You, Duanquan Xu","doi":"10.1109/SPAC.2014.6982715","DOIUrl":null,"url":null,"abstract":"Intra prediction is an important coding tool to exploit correlation within one picture in image and video compression. Before the ultimate intra prediction values are generated for current block along oblique angles, a fixed low-pass filtering with 3-tap filter (1, 2, 1) will be applied to the three prediction pixel values to avoid the effect of pulse noise. In this paper, we use adaptive intra prediction filter (AIPF) to replace the fixed filter to minimize the prediction errors. To get the adaptive filter coefficients in an on-line way with an acceptable accuracy and no coding overhead, we combine it with template matching (TM). After the best estimation of current block through template matching, the optimal adaptive filter coefficients are calculated with least-square optimization through considering the best estimation as `current' block. The adaptive filter is used to obtain intra prediction values instead of the 3-tap fixed low-pass filter. Experimental results show that the AIPF can get a stable coding gain on all test sequences, and reduce the bit-rate by up to 1.74% comparing with that using only TM.","PeriodicalId":326246,"journal":{"name":"Proceedings 2014 IEEE International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Adaptive intra prediction filtering (AIPF)\",\"authors\":\"Yuanfeng He, Qijun Wang, Xinge You, Duanquan Xu\",\"doi\":\"10.1109/SPAC.2014.6982715\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intra prediction is an important coding tool to exploit correlation within one picture in image and video compression. Before the ultimate intra prediction values are generated for current block along oblique angles, a fixed low-pass filtering with 3-tap filter (1, 2, 1) will be applied to the three prediction pixel values to avoid the effect of pulse noise. In this paper, we use adaptive intra prediction filter (AIPF) to replace the fixed filter to minimize the prediction errors. To get the adaptive filter coefficients in an on-line way with an acceptable accuracy and no coding overhead, we combine it with template matching (TM). After the best estimation of current block through template matching, the optimal adaptive filter coefficients are calculated with least-square optimization through considering the best estimation as `current' block. The adaptive filter is used to obtain intra prediction values instead of the 3-tap fixed low-pass filter. Experimental results show that the AIPF can get a stable coding gain on all test sequences, and reduce the bit-rate by up to 1.74% comparing with that using only TM.\",\"PeriodicalId\":326246,\"journal\":{\"name\":\"Proceedings 2014 IEEE International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 2014 IEEE International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPAC.2014.6982715\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2014 IEEE International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAC.2014.6982715","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在图像和视频压缩中,图像内预测是利用图像内部相关性的重要编码工具。为了避免脉冲噪声的影响,在产生沿斜角方向电流块的最终内预测值之前,将对三个预测像素值进行固定的低通滤波(3分导滤波器1,2,1)。在本文中,我们使用自适应内预测滤波器(AIPF)来代替固定滤波器,以最小化预测误差。为了在线获得精度可接受且无需编码开销的自适应滤波系数,我们将其与模板匹配(TM)相结合。通过模板匹配对电流块进行最佳估计后,考虑最佳估计为“电流”块,采用最小二乘优化方法计算最优自适应滤波系数。采用自适应滤波器代替三抽头固定低通滤波器获得帧内预测值。实验结果表明,AIPF在所有测试序列上都能获得稳定的编码增益,比特率比仅使用TM降低了1.74%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive intra prediction filtering (AIPF)
Intra prediction is an important coding tool to exploit correlation within one picture in image and video compression. Before the ultimate intra prediction values are generated for current block along oblique angles, a fixed low-pass filtering with 3-tap filter (1, 2, 1) will be applied to the three prediction pixel values to avoid the effect of pulse noise. In this paper, we use adaptive intra prediction filter (AIPF) to replace the fixed filter to minimize the prediction errors. To get the adaptive filter coefficients in an on-line way with an acceptable accuracy and no coding overhead, we combine it with template matching (TM). After the best estimation of current block through template matching, the optimal adaptive filter coefficients are calculated with least-square optimization through considering the best estimation as `current' block. The adaptive filter is used to obtain intra prediction values instead of the 3-tap fixed low-pass filter. Experimental results show that the AIPF can get a stable coding gain on all test sequences, and reduce the bit-rate by up to 1.74% comparing with that using only TM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信