Mohsen Fayyaz, M. H. Saffar, M. Sabokrou, M. Hoseini, M. Fathy
{"title":"基于特征表示的在线签名验证","authors":"Mohsen Fayyaz, M. H. Saffar, M. Sabokrou, M. Hoseini, M. Fathy","doi":"10.1109/AISP.2015.7123528","DOIUrl":null,"url":null,"abstract":"Signature verification techniques employ various specifications of a signature. Feature extraction and feature selection have an enormous effect on accuracy of signature verification. Feature extraction is a difficult phase of signature verification systems due to different shapes of signatures and different situations of sampling. This paper presents a method based on feature learning, in which a sparse autoencoder tries to learn features of signatures. Then learned features have been employed to present users' signatures. Finally, users' signatures have been classified using one-class classifiers. The proposed method is signature shape independent thanks to learning features from users' signatures using autoencoder. Verification process of proposed system is evaluated on SVC2004 signature database, which contains genuine and skilled forgery signatures. The experimental results indicate error reduction and accuracy enhancement.","PeriodicalId":405857,"journal":{"name":"2015 The International Symposium on Artificial Intelligence and Signal Processing (AISP)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Online signature verification based on feature representation\",\"authors\":\"Mohsen Fayyaz, M. H. Saffar, M. Sabokrou, M. Hoseini, M. Fathy\",\"doi\":\"10.1109/AISP.2015.7123528\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Signature verification techniques employ various specifications of a signature. Feature extraction and feature selection have an enormous effect on accuracy of signature verification. Feature extraction is a difficult phase of signature verification systems due to different shapes of signatures and different situations of sampling. This paper presents a method based on feature learning, in which a sparse autoencoder tries to learn features of signatures. Then learned features have been employed to present users' signatures. Finally, users' signatures have been classified using one-class classifiers. The proposed method is signature shape independent thanks to learning features from users' signatures using autoencoder. Verification process of proposed system is evaluated on SVC2004 signature database, which contains genuine and skilled forgery signatures. The experimental results indicate error reduction and accuracy enhancement.\",\"PeriodicalId\":405857,\"journal\":{\"name\":\"2015 The International Symposium on Artificial Intelligence and Signal Processing (AISP)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 The International Symposium on Artificial Intelligence and Signal Processing (AISP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AISP.2015.7123528\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 The International Symposium on Artificial Intelligence and Signal Processing (AISP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AISP.2015.7123528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Online signature verification based on feature representation
Signature verification techniques employ various specifications of a signature. Feature extraction and feature selection have an enormous effect on accuracy of signature verification. Feature extraction is a difficult phase of signature verification systems due to different shapes of signatures and different situations of sampling. This paper presents a method based on feature learning, in which a sparse autoencoder tries to learn features of signatures. Then learned features have been employed to present users' signatures. Finally, users' signatures have been classified using one-class classifiers. The proposed method is signature shape independent thanks to learning features from users' signatures using autoencoder. Verification process of proposed system is evaluated on SVC2004 signature database, which contains genuine and skilled forgery signatures. The experimental results indicate error reduction and accuracy enhancement.