彩色人脸识别的四元数离散Racah矩卷积神经网络

Abdelmajid El Alami, Abderrahim Mesbah, Nadia Berrahou, Aissam Berrahou, H. Qjidaa
{"title":"彩色人脸识别的四元数离散Racah矩卷积神经网络","authors":"Abdelmajid El Alami, Abderrahim Mesbah, Nadia Berrahou, Aissam Berrahou, H. Qjidaa","doi":"10.1109/ISCV54655.2022.9806123","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel architecture called quaternion discrete Racah moments convolutional neural network (QRMCNN) for color face recognition to improve the recognition accuracy and to reduce the computational complexity. Quaternion Racah moments (QRM) can extract effective features from color images. The use of QRM as first layer aims to reduce the input matrix size of the proposed architecture in the earliest orders and hence enormously decrease the number of parameters and the computational time. Experiments are carried out on faces96 and FEI face datasets to demonstrate the efficiency of the proposed architecture in the training process. The obtained results indicate clearly that the QRMCNN outperforms previous methods in terms of recognition rate and GPU elapsed time.","PeriodicalId":426665,"journal":{"name":"2022 International Conference on Intelligent Systems and Computer Vision (ISCV)","volume":"264 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quaternion Discrete Racah Moments Convolutional Neural Network for Color Face Recognition\",\"authors\":\"Abdelmajid El Alami, Abderrahim Mesbah, Nadia Berrahou, Aissam Berrahou, H. Qjidaa\",\"doi\":\"10.1109/ISCV54655.2022.9806123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a novel architecture called quaternion discrete Racah moments convolutional neural network (QRMCNN) for color face recognition to improve the recognition accuracy and to reduce the computational complexity. Quaternion Racah moments (QRM) can extract effective features from color images. The use of QRM as first layer aims to reduce the input matrix size of the proposed architecture in the earliest orders and hence enormously decrease the number of parameters and the computational time. Experiments are carried out on faces96 and FEI face datasets to demonstrate the efficiency of the proposed architecture in the training process. The obtained results indicate clearly that the QRMCNN outperforms previous methods in terms of recognition rate and GPU elapsed time.\",\"PeriodicalId\":426665,\"journal\":{\"name\":\"2022 International Conference on Intelligent Systems and Computer Vision (ISCV)\",\"volume\":\"264 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Intelligent Systems and Computer Vision (ISCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCV54655.2022.9806123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Intelligent Systems and Computer Vision (ISCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCV54655.2022.9806123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的四元数离散Racah矩卷积神经网络(QRMCNN)用于彩色人脸识别,以提高识别精度和降低计算复杂度。四元数拉卡矩(QRM)可以从彩色图像中提取有效特征。使用QRM作为第一层的目的是在最早的阶数上减小所提出的体系结构的输入矩阵大小,从而大大减少参数的数量和计算时间。在facees96和FEI人脸数据集上进行了实验,验证了所提架构在训练过程中的有效性。得到的结果表明,QRMCNN在识别率和GPU运行时间方面优于先前的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quaternion Discrete Racah Moments Convolutional Neural Network for Color Face Recognition
In this paper, we propose a novel architecture called quaternion discrete Racah moments convolutional neural network (QRMCNN) for color face recognition to improve the recognition accuracy and to reduce the computational complexity. Quaternion Racah moments (QRM) can extract effective features from color images. The use of QRM as first layer aims to reduce the input matrix size of the proposed architecture in the earliest orders and hence enormously decrease the number of parameters and the computational time. Experiments are carried out on faces96 and FEI face datasets to demonstrate the efficiency of the proposed architecture in the training process. The obtained results indicate clearly that the QRMCNN outperforms previous methods in terms of recognition rate and GPU elapsed time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信