人工神经网络高性能不动点乘法器的自动生成

Yang Zhao, Zhongxia Shang, Y. Lian
{"title":"人工神经网络高性能不动点乘法器的自动生成","authors":"Yang Zhao, Zhongxia Shang, Y. Lian","doi":"10.1109/AICAS.2019.8771573","DOIUrl":null,"url":null,"abstract":"Multiplier is a critical building block in artificial neural network (ANN). The precision and connection structure of the multiplier should be optimized for an ANN to achieve the best energy, speed and area efficiency. Changes in ANN application and CMOS process often result in the redesign of the multiplier. This paper presents an auto generation method for high-performance fixed-point multiplier based on three techniques, i.e. Modified Booth Encoding (MBE) scheme, improved three-dimensional reduction method (ITDM) and mixed parallel pipelining (MPP). The MBE is customized for ReLU activation function based ANN to remove the sign bit of the multiplicand to save area. The ITDM further shorts the critical path by changing the position of half adder in the conventional TDM. The proposed MPP divides the structures into different stages for parallel and pipelined implementation. The auto generated multiplier speed is 4.04 times faster and the layout is 29% denser and more regular than the conventional MBE combining with TDM method based multiplier.","PeriodicalId":273095,"journal":{"name":"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)","volume":"217 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Auto Generation of High-Performance Fixed-Point Multiplier for Artificial Neural Networks\",\"authors\":\"Yang Zhao, Zhongxia Shang, Y. Lian\",\"doi\":\"10.1109/AICAS.2019.8771573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multiplier is a critical building block in artificial neural network (ANN). The precision and connection structure of the multiplier should be optimized for an ANN to achieve the best energy, speed and area efficiency. Changes in ANN application and CMOS process often result in the redesign of the multiplier. This paper presents an auto generation method for high-performance fixed-point multiplier based on three techniques, i.e. Modified Booth Encoding (MBE) scheme, improved three-dimensional reduction method (ITDM) and mixed parallel pipelining (MPP). The MBE is customized for ReLU activation function based ANN to remove the sign bit of the multiplicand to save area. The ITDM further shorts the critical path by changing the position of half adder in the conventional TDM. The proposed MPP divides the structures into different stages for parallel and pipelined implementation. The auto generated multiplier speed is 4.04 times faster and the layout is 29% denser and more regular than the conventional MBE combining with TDM method based multiplier.\",\"PeriodicalId\":273095,\"journal\":{\"name\":\"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"volume\":\"217 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AICAS.2019.8771573\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAS.2019.8771573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

乘法器是人工神经网络的重要组成部分。对于人工神经网络,必须对乘法器的精度和连接结构进行优化,以达到最佳的能量、速度和面积效率。人工神经网络应用和CMOS工艺的变化往往导致乘法器的重新设计。提出了一种基于改进Booth编码(MBE)方案、改进三维约简法(ITDM)和混合并行流水线(MPP)三种技术的高性能不动点乘子自动生成方法。MBE是针对基于ReLU激活函数的人工神经网络定制的,用于去除乘数的符号位以节省面积。通过改变传统时分复用中半加法器的位置,进一步缩短了关键路径。提出的MPP将结构划分为不同的并行和流水线实现阶段。自动生成乘法器的速度比传统的MBE与TDM方法相结合的乘法器提高了4.04倍,布局密度和规则性提高了29%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Auto Generation of High-Performance Fixed-Point Multiplier for Artificial Neural Networks
Multiplier is a critical building block in artificial neural network (ANN). The precision and connection structure of the multiplier should be optimized for an ANN to achieve the best energy, speed and area efficiency. Changes in ANN application and CMOS process often result in the redesign of the multiplier. This paper presents an auto generation method for high-performance fixed-point multiplier based on three techniques, i.e. Modified Booth Encoding (MBE) scheme, improved three-dimensional reduction method (ITDM) and mixed parallel pipelining (MPP). The MBE is customized for ReLU activation function based ANN to remove the sign bit of the multiplicand to save area. The ITDM further shorts the critical path by changing the position of half adder in the conventional TDM. The proposed MPP divides the structures into different stages for parallel and pipelined implementation. The auto generated multiplier speed is 4.04 times faster and the layout is 29% denser and more regular than the conventional MBE combining with TDM method based multiplier.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信