基准测试Łukasiewicz与神经网络属性的逻辑求解器

Sandro Preto, F. Manyà, M. Finger
{"title":"基准测试Łukasiewicz与神经网络属性的逻辑求解器","authors":"Sandro Preto, F. Manyà, M. Finger","doi":"10.1109/ISMVL57333.2023.00039","DOIUrl":null,"url":null,"abstract":"We propose new benchmarks for problems related to Łukasiewicz Infinitely-valued Logic and discuss methods for generating them. Such benchmarks comprehend instances that state properties about neural networks. In particular, reachability properties yield satisfiability instances and robustness properties yield logical consequence instances. We also present the results of empirical experiments where the proposed benchmarks were run in solvers based on SMT and MILP technologies. In this way, we are able, on the one hand, to compare the performance of different solvers and, on the other hand, to delve deeper into the investigation of neural network formal verification.","PeriodicalId":419220,"journal":{"name":"2023 IEEE 53rd International Symposium on Multiple-Valued Logic (ISMVL)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Benchmarking Łukasiewicz Logic Solvers with Properties of Neural Networks\",\"authors\":\"Sandro Preto, F. Manyà, M. Finger\",\"doi\":\"10.1109/ISMVL57333.2023.00039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose new benchmarks for problems related to Łukasiewicz Infinitely-valued Logic and discuss methods for generating them. Such benchmarks comprehend instances that state properties about neural networks. In particular, reachability properties yield satisfiability instances and robustness properties yield logical consequence instances. We also present the results of empirical experiments where the proposed benchmarks were run in solvers based on SMT and MILP technologies. In this way, we are able, on the one hand, to compare the performance of different solvers and, on the other hand, to delve deeper into the investigation of neural network formal verification.\",\"PeriodicalId\":419220,\"journal\":{\"name\":\"2023 IEEE 53rd International Symposium on Multiple-Valued Logic (ISMVL)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 53rd International Symposium on Multiple-Valued Logic (ISMVL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMVL57333.2023.00039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 53rd International Symposium on Multiple-Valued Logic (ISMVL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL57333.2023.00039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了Łukasiewicz无限值逻辑相关问题的新基准,并讨论了生成它们的方法。这样的基准可以理解神经网络状态属性的实例。特别是,可达性属性产生可满足性实例,健壮性属性产生逻辑结果实例。我们还提出了经验实验的结果,其中提出的基准在基于SMT和MILP技术的求解器中运行。通过这种方式,我们一方面可以比较不同求解器的性能,另一方面可以更深入地研究神经网络的形式验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Benchmarking Łukasiewicz Logic Solvers with Properties of Neural Networks
We propose new benchmarks for problems related to Łukasiewicz Infinitely-valued Logic and discuss methods for generating them. Such benchmarks comprehend instances that state properties about neural networks. In particular, reachability properties yield satisfiability instances and robustness properties yield logical consequence instances. We also present the results of empirical experiments where the proposed benchmarks were run in solvers based on SMT and MILP technologies. In this way, we are able, on the one hand, to compare the performance of different solvers and, on the other hand, to delve deeper into the investigation of neural network formal verification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信