蚁群优化中的负学习:在多维背包问题中的应用

Teddy Nurcahyadi, C. Blum
{"title":"蚁群优化中的负学习:在多维背包问题中的应用","authors":"Teddy Nurcahyadi, C. Blum","doi":"10.1145/3461598.3461602","DOIUrl":null,"url":null,"abstract":"In this paper we continue our recent work on the development of a negative learning component for ant colony optimization, which is a metaheuristic algorithm that is mostly based on positive learning, that is, on learning from positive examples. In particular, we apply our approach to the well-known multi dimensional knapsack problem as a test case. The obtained results show that our negative learning approach significantly outperforms the standard ant colony optimization approach.","PeriodicalId":408426,"journal":{"name":"Proceedings of the 2021 5th International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Negative Learning in Ant Colony Optimization: Application to the Multi Dimensional Knapsack Problem\",\"authors\":\"Teddy Nurcahyadi, C. Blum\",\"doi\":\"10.1145/3461598.3461602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we continue our recent work on the development of a negative learning component for ant colony optimization, which is a metaheuristic algorithm that is mostly based on positive learning, that is, on learning from positive examples. In particular, we apply our approach to the well-known multi dimensional knapsack problem as a test case. The obtained results show that our negative learning approach significantly outperforms the standard ant colony optimization approach.\",\"PeriodicalId\":408426,\"journal\":{\"name\":\"Proceedings of the 2021 5th International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2021 5th International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3461598.3461602\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 5th International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3461598.3461602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在本文中,我们继续我们最近关于蚁群优化负学习组件的开发工作,这是一种主要基于正学习的元启发式算法,即从正例子中学习。特别是,我们将我们的方法应用于众所周知的多维背包问题作为测试用例。得到的结果表明,我们的负学习方法明显优于标准蚁群优化方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Negative Learning in Ant Colony Optimization: Application to the Multi Dimensional Knapsack Problem
In this paper we continue our recent work on the development of a negative learning component for ant colony optimization, which is a metaheuristic algorithm that is mostly based on positive learning, that is, on learning from positive examples. In particular, we apply our approach to the well-known multi dimensional knapsack problem as a test case. The obtained results show that our negative learning approach significantly outperforms the standard ant colony optimization approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信