{"title":"开普勒飞船收集数据的光曲线分析","authors":"Eduardo Nigri, Ognjen Arandjelovic","doi":"10.1145/3078971.3080544","DOIUrl":null,"url":null,"abstract":"Although scarce, previous work on the application of machine learning and data mining techniques on large corpora of astronomical data has produced promising results. For example, on the task of detecting so-called Kepler objects of interest (KOIs), a range of different `off the shelf' classifiers has demonstrated outstanding performance. These rather preliminary research efforts motivate further exploration of this data domain. In the present work we focus on the analysis of threshold crossing events (TCEs) extracted from photometric data acquired by the Kepler spacecraft. We show that the task of classifying TCEs as being effected by actual planetary transits as opposed to confounding astrophysical phenomena is significantly more challenging than that of KOI detection, with different classifiers exhibiting vastly different performances. Nevertheless, the best performing classifier type, the random forest, achieved excellent accuracy, correctly predicting in approximately 96% of the cases. Our results and analysis should illuminate further efforts into the development of more sophisticated, automatic techniques, and encourage additional work in the area.","PeriodicalId":403556,"journal":{"name":"Proceedings of the 2017 ACM on International Conference on Multimedia Retrieval","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Light Curve Analysis From Kepler Spacecraft Collected Data\",\"authors\":\"Eduardo Nigri, Ognjen Arandjelovic\",\"doi\":\"10.1145/3078971.3080544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although scarce, previous work on the application of machine learning and data mining techniques on large corpora of astronomical data has produced promising results. For example, on the task of detecting so-called Kepler objects of interest (KOIs), a range of different `off the shelf' classifiers has demonstrated outstanding performance. These rather preliminary research efforts motivate further exploration of this data domain. In the present work we focus on the analysis of threshold crossing events (TCEs) extracted from photometric data acquired by the Kepler spacecraft. We show that the task of classifying TCEs as being effected by actual planetary transits as opposed to confounding astrophysical phenomena is significantly more challenging than that of KOI detection, with different classifiers exhibiting vastly different performances. Nevertheless, the best performing classifier type, the random forest, achieved excellent accuracy, correctly predicting in approximately 96% of the cases. Our results and analysis should illuminate further efforts into the development of more sophisticated, automatic techniques, and encourage additional work in the area.\",\"PeriodicalId\":403556,\"journal\":{\"name\":\"Proceedings of the 2017 ACM on International Conference on Multimedia Retrieval\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2017 ACM on International Conference on Multimedia Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3078971.3080544\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM on International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3078971.3080544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Light Curve Analysis From Kepler Spacecraft Collected Data
Although scarce, previous work on the application of machine learning and data mining techniques on large corpora of astronomical data has produced promising results. For example, on the task of detecting so-called Kepler objects of interest (KOIs), a range of different `off the shelf' classifiers has demonstrated outstanding performance. These rather preliminary research efforts motivate further exploration of this data domain. In the present work we focus on the analysis of threshold crossing events (TCEs) extracted from photometric data acquired by the Kepler spacecraft. We show that the task of classifying TCEs as being effected by actual planetary transits as opposed to confounding astrophysical phenomena is significantly more challenging than that of KOI detection, with different classifiers exhibiting vastly different performances. Nevertheless, the best performing classifier type, the random forest, achieved excellent accuracy, correctly predicting in approximately 96% of the cases. Our results and analysis should illuminate further efforts into the development of more sophisticated, automatic techniques, and encourage additional work in the area.