P. H. E. S. Lima, R. M. Campello de Souza, Juliano B. Lima
{"title":"哈特利,有限域上的余弦和正弦分数变换","authors":"P. H. E. S. Lima, R. M. Campello de Souza, Juliano B. Lima","doi":"10.1109/ITS.2014.6948004","DOIUrl":null,"url":null,"abstract":"We introduce finite field versions of fractional Hartley, sine and cosine types 1 and 4 transforms using a matrix function approach. The proposed definitions employ a finite field extension of matrix functions, which does not require the construction of an eigenvector set of the corresponding transform. We also present a relationship between the Fourier and the Hartley fractional matrices and make a preliminary discussion concerning application scenarios for the developed theory.","PeriodicalId":359348,"journal":{"name":"2014 International Telecommunications Symposium (ITS)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hartley, cosine and sine fractional transforms over Finite Fields\",\"authors\":\"P. H. E. S. Lima, R. M. Campello de Souza, Juliano B. Lima\",\"doi\":\"10.1109/ITS.2014.6948004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce finite field versions of fractional Hartley, sine and cosine types 1 and 4 transforms using a matrix function approach. The proposed definitions employ a finite field extension of matrix functions, which does not require the construction of an eigenvector set of the corresponding transform. We also present a relationship between the Fourier and the Hartley fractional matrices and make a preliminary discussion concerning application scenarios for the developed theory.\",\"PeriodicalId\":359348,\"journal\":{\"name\":\"2014 International Telecommunications Symposium (ITS)\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Telecommunications Symposium (ITS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITS.2014.6948004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Telecommunications Symposium (ITS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITS.2014.6948004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hartley, cosine and sine fractional transforms over Finite Fields
We introduce finite field versions of fractional Hartley, sine and cosine types 1 and 4 transforms using a matrix function approach. The proposed definitions employ a finite field extension of matrix functions, which does not require the construction of an eigenvector set of the corresponding transform. We also present a relationship between the Fourier and the Hartley fractional matrices and make a preliminary discussion concerning application scenarios for the developed theory.