哈特利,有限域上的余弦和正弦分数变换

P. H. E. S. Lima, R. M. Campello de Souza, Juliano B. Lima
{"title":"哈特利,有限域上的余弦和正弦分数变换","authors":"P. H. E. S. Lima, R. M. Campello de Souza, Juliano B. Lima","doi":"10.1109/ITS.2014.6948004","DOIUrl":null,"url":null,"abstract":"We introduce finite field versions of fractional Hartley, sine and cosine types 1 and 4 transforms using a matrix function approach. The proposed definitions employ a finite field extension of matrix functions, which does not require the construction of an eigenvector set of the corresponding transform. We also present a relationship between the Fourier and the Hartley fractional matrices and make a preliminary discussion concerning application scenarios for the developed theory.","PeriodicalId":359348,"journal":{"name":"2014 International Telecommunications Symposium (ITS)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hartley, cosine and sine fractional transforms over Finite Fields\",\"authors\":\"P. H. E. S. Lima, R. M. Campello de Souza, Juliano B. Lima\",\"doi\":\"10.1109/ITS.2014.6948004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce finite field versions of fractional Hartley, sine and cosine types 1 and 4 transforms using a matrix function approach. The proposed definitions employ a finite field extension of matrix functions, which does not require the construction of an eigenvector set of the corresponding transform. We also present a relationship between the Fourier and the Hartley fractional matrices and make a preliminary discussion concerning application scenarios for the developed theory.\",\"PeriodicalId\":359348,\"journal\":{\"name\":\"2014 International Telecommunications Symposium (ITS)\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Telecommunications Symposium (ITS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITS.2014.6948004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Telecommunications Symposium (ITS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITS.2014.6948004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们引入有限域版本的分数Hartley,正弦和余弦类型1和4变换使用矩阵函数的方法。所提出的定义采用矩阵函数的有限域扩展,不需要构造相应变换的特征向量集。我们还提出了傅里叶和哈特利分数矩阵之间的关系,并对发展理论的应用场景作了初步的讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hartley, cosine and sine fractional transforms over Finite Fields
We introduce finite field versions of fractional Hartley, sine and cosine types 1 and 4 transforms using a matrix function approach. The proposed definitions employ a finite field extension of matrix functions, which does not require the construction of an eigenvector set of the corresponding transform. We also present a relationship between the Fourier and the Hartley fractional matrices and make a preliminary discussion concerning application scenarios for the developed theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信