基于一类支持向量机的SCADA系统异常检测

Jianmin Jiang, Lasith Yasakethu
{"title":"基于一类支持向量机的SCADA系统异常检测","authors":"Jianmin Jiang, Lasith Yasakethu","doi":"10.1109/CyberC.2013.22","DOIUrl":null,"url":null,"abstract":"Funded by European Framework-7 (FP7), the CockpicCI project aims at developing intelligent risk detection, analysis and protection techniques for Critical Infrastructures (CI). In this paper, we describes our recent research on automated anomaly detection from central Supervisory Control and Data Acquisition (SCADA) systems and their related commands/measurements in the SCADA-field equipment communications. The work exploits the concept of one-class SVM (Support Vector Machines) and adaptively controls its decision parameter to detect unusual patterns from inputs and generate alarms for on-site engineers to further investigate. Experiments on simulation data sets from telecommunication networks illustrate that the proposed algorithm achieves high detection rates, providing excellent potential for further research and development towards practical tools for protection of SCADA systems.","PeriodicalId":133756,"journal":{"name":"2013 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"Anomaly Detection via One Class SVM for Protection of SCADA Systems\",\"authors\":\"Jianmin Jiang, Lasith Yasakethu\",\"doi\":\"10.1109/CyberC.2013.22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Funded by European Framework-7 (FP7), the CockpicCI project aims at developing intelligent risk detection, analysis and protection techniques for Critical Infrastructures (CI). In this paper, we describes our recent research on automated anomaly detection from central Supervisory Control and Data Acquisition (SCADA) systems and their related commands/measurements in the SCADA-field equipment communications. The work exploits the concept of one-class SVM (Support Vector Machines) and adaptively controls its decision parameter to detect unusual patterns from inputs and generate alarms for on-site engineers to further investigate. Experiments on simulation data sets from telecommunication networks illustrate that the proposed algorithm achieves high detection rates, providing excellent potential for further research and development towards practical tools for protection of SCADA systems.\",\"PeriodicalId\":133756,\"journal\":{\"name\":\"2013 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CyberC.2013.22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CyberC.2013.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

摘要

CockpicCI项目由欧洲框架-7 (FP7)资助,旨在为关键基础设施(CI)开发智能风险检测、分析和保护技术。在本文中,我们描述了我们最近在中央监控和数据采集(SCADA)系统中的自动异常检测及其在SCADA现场设备通信中的相关命令/测量的研究。这项工作利用了一类支持向量机(SVM)的概念,并自适应控制其决策参数,从输入中检测异常模式,并为现场工程师产生警报,以进一步调查。在电信网络仿真数据集上的实验表明,该算法具有较高的检测率,为进一步研究和开发用于SCADA系统保护的实用工具提供了良好的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Anomaly Detection via One Class SVM for Protection of SCADA Systems
Funded by European Framework-7 (FP7), the CockpicCI project aims at developing intelligent risk detection, analysis and protection techniques for Critical Infrastructures (CI). In this paper, we describes our recent research on automated anomaly detection from central Supervisory Control and Data Acquisition (SCADA) systems and their related commands/measurements in the SCADA-field equipment communications. The work exploits the concept of one-class SVM (Support Vector Machines) and adaptively controls its decision parameter to detect unusual patterns from inputs and generate alarms for on-site engineers to further investigate. Experiments on simulation data sets from telecommunication networks illustrate that the proposed algorithm achieves high detection rates, providing excellent potential for further research and development towards practical tools for protection of SCADA systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信