时域神经处理的面积效率倍增累积架构与实现

Ichiro Kawashima, Yuichi Katori, T. Morie, H. Tamukoh
{"title":"时域神经处理的面积效率倍增累积架构与实现","authors":"Ichiro Kawashima, Yuichi Katori, T. Morie, H. Tamukoh","doi":"10.1109/ICFPT52863.2021.9609809","DOIUrl":null,"url":null,"abstract":"In our work, a new area-efficient multiply-accumulation scheme for time-domain neural processing named differential multiply-accumulation is proposed. Our new scheme reduces hardware resources utilization of multiply-accumulation with suppressing the increasing computational time resulting from the time-multiplexing. As a result, 2,048 neurons of fully connected CBM and RC-CBM were synthesized for a single field-programmable gate array (FPGA).","PeriodicalId":376220,"journal":{"name":"2021 International Conference on Field-Programmable Technology (ICFPT)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An area-efficient multiply-accumulation architecture and implementations for time-domain neural processing\",\"authors\":\"Ichiro Kawashima, Yuichi Katori, T. Morie, H. Tamukoh\",\"doi\":\"10.1109/ICFPT52863.2021.9609809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In our work, a new area-efficient multiply-accumulation scheme for time-domain neural processing named differential multiply-accumulation is proposed. Our new scheme reduces hardware resources utilization of multiply-accumulation with suppressing the increasing computational time resulting from the time-multiplexing. As a result, 2,048 neurons of fully connected CBM and RC-CBM were synthesized for a single field-programmable gate array (FPGA).\",\"PeriodicalId\":376220,\"journal\":{\"name\":\"2021 International Conference on Field-Programmable Technology (ICFPT)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Field-Programmable Technology (ICFPT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICFPT52863.2021.9609809\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Field-Programmable Technology (ICFPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICFPT52863.2021.9609809","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在我们的工作中,提出了一种新的时域神经处理的面积高效的乘法-积累方案,称为微分乘法-积累。新方案通过抑制时间复用带来的计算时间的增加,降低了乘法累加的硬件资源利用率。结果表明,在单个现场可编程门阵列(FPGA)上合成了2,048个全连接CBM和RC-CBM神经元。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An area-efficient multiply-accumulation architecture and implementations for time-domain neural processing
In our work, a new area-efficient multiply-accumulation scheme for time-domain neural processing named differential multiply-accumulation is proposed. Our new scheme reduces hardware resources utilization of multiply-accumulation with suppressing the increasing computational time resulting from the time-multiplexing. As a result, 2,048 neurons of fully connected CBM and RC-CBM were synthesized for a single field-programmable gate array (FPGA).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信