隐马尔可夫建模的最小判别信息方法

Y. Ephraim, A. Dembo, L. Rabiner
{"title":"隐马尔可夫建模的最小判别信息方法","authors":"Y. Ephraim, A. Dembo, L. Rabiner","doi":"10.1109/ICASSP.1987.1169727","DOIUrl":null,"url":null,"abstract":"A new iterative approach for hidden Markov modeling of information sources which aims at minimizing the discrimination information (or the cross-entropy) between the source and the model is proposed. This approach does not require the commonly used assumption that the source to be modeled is a hidden Markov process. The algorithm is started from the model estimated by the traditional maximum likelihood (ML) approach and alternatively decreases the discrimination information over all probability distributions of the source which agree with the given measurements and all hidden Markov models. The proposed procedure generalizes the Baum algorithm for ML hidden Markov modeling. The procedure is shown to be a descent algorithm for the discrimination information measure and its local convergence is proved.","PeriodicalId":140810,"journal":{"name":"ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1987-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"110","resultStr":"{\"title\":\"A minimum discrimination information approach for hidden Markov modeling\",\"authors\":\"Y. Ephraim, A. Dembo, L. Rabiner\",\"doi\":\"10.1109/ICASSP.1987.1169727\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new iterative approach for hidden Markov modeling of information sources which aims at minimizing the discrimination information (or the cross-entropy) between the source and the model is proposed. This approach does not require the commonly used assumption that the source to be modeled is a hidden Markov process. The algorithm is started from the model estimated by the traditional maximum likelihood (ML) approach and alternatively decreases the discrimination information over all probability distributions of the source which agree with the given measurements and all hidden Markov models. The proposed procedure generalizes the Baum algorithm for ML hidden Markov modeling. The procedure is shown to be a descent algorithm for the discrimination information measure and its local convergence is proved.\",\"PeriodicalId\":140810,\"journal\":{\"name\":\"ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing\",\"volume\":\"115 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1987-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"110\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.1987.1169727\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1987.1169727","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 110

摘要

提出了一种新的信息源隐马尔可夫建模迭代方法,其目标是最小化信息源与模型之间的鉴别信息(或交叉熵)。这种方法不需要通常使用的假设,即要建模的源是隐马尔可夫过程。该算法从传统的最大似然(ML)方法估计的模型开始,在与给定测量值和所有隐马尔可夫模型一致的源的所有概率分布上减少识别信息。该方法推广了ML隐马尔可夫建模的Baum算法。证明了该方法是判别信息测度的下降算法,并证明了其局部收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A minimum discrimination information approach for hidden Markov modeling
A new iterative approach for hidden Markov modeling of information sources which aims at minimizing the discrimination information (or the cross-entropy) between the source and the model is proposed. This approach does not require the commonly used assumption that the source to be modeled is a hidden Markov process. The algorithm is started from the model estimated by the traditional maximum likelihood (ML) approach and alternatively decreases the discrimination information over all probability distributions of the source which agree with the given measurements and all hidden Markov models. The proposed procedure generalizes the Baum algorithm for ML hidden Markov modeling. The procedure is shown to be a descent algorithm for the discrimination information measure and its local convergence is proved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信