GPU上最近邻查询的并行树遍历

Moohyeon Nam, Jinwoong Kim, Beomseok Nam
{"title":"GPU上最近邻查询的并行树遍历","authors":"Moohyeon Nam, Jinwoong Kim, Beomseok Nam","doi":"10.1109/ICPP.2016.20","DOIUrl":null,"url":null,"abstract":"The similarity search problem is found in many application domains including computer graphics, information retrieval, statistics, computational biology, and scientific data processing just to name a few. Recently several studies have been performed to accelerate the k-nearest neighbor (kNN) queries using GPUs, but most of the works develop brute-force exhaustive scanning algorithms leveraging a large number of GPU cores and none of the prior works employ GPUs for an n-ary tree structured index. It is known that multi-dimensional hierarchical indexing trees such as R-trees are inherently not well suited for GPUs because of their irregular tree traversal and memory access patterns. Traversing hierarchical tree structures in an irregular manner makes it difficult to exploit parallelism since GPUs are tailored for deterministic memory accesses. In this work, we develop a data parallel tree traversal algorithm, Parallel Scan and Backtrack (PSB), for kNN query processing on the GPU, this algorithm traverses a multi-dimensional tree structured index while avoiding warp divergence problems. In order to take advantage of accessing contiguous memory blocks, the proposed PSB algorithm performs linear scanning of sibling leaf nodes, which increases the chance to optimize the parallel SIMD algorithm. We evaluate the performance of the PSB algorithm against the classic branch-and-bound kNN query processing algorithm. Our experiments with real datasets show that the PSB algorithm is faster by a large margin than the branch-and-bound algorithm.","PeriodicalId":409991,"journal":{"name":"2016 45th International Conference on Parallel Processing (ICPP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Parallel Tree Traversal for Nearest Neighbor Query on the GPU\",\"authors\":\"Moohyeon Nam, Jinwoong Kim, Beomseok Nam\",\"doi\":\"10.1109/ICPP.2016.20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The similarity search problem is found in many application domains including computer graphics, information retrieval, statistics, computational biology, and scientific data processing just to name a few. Recently several studies have been performed to accelerate the k-nearest neighbor (kNN) queries using GPUs, but most of the works develop brute-force exhaustive scanning algorithms leveraging a large number of GPU cores and none of the prior works employ GPUs for an n-ary tree structured index. It is known that multi-dimensional hierarchical indexing trees such as R-trees are inherently not well suited for GPUs because of their irregular tree traversal and memory access patterns. Traversing hierarchical tree structures in an irregular manner makes it difficult to exploit parallelism since GPUs are tailored for deterministic memory accesses. In this work, we develop a data parallel tree traversal algorithm, Parallel Scan and Backtrack (PSB), for kNN query processing on the GPU, this algorithm traverses a multi-dimensional tree structured index while avoiding warp divergence problems. In order to take advantage of accessing contiguous memory blocks, the proposed PSB algorithm performs linear scanning of sibling leaf nodes, which increases the chance to optimize the parallel SIMD algorithm. We evaluate the performance of the PSB algorithm against the classic branch-and-bound kNN query processing algorithm. Our experiments with real datasets show that the PSB algorithm is faster by a large margin than the branch-and-bound algorithm.\",\"PeriodicalId\":409991,\"journal\":{\"name\":\"2016 45th International Conference on Parallel Processing (ICPP)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 45th International Conference on Parallel Processing (ICPP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPP.2016.20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 45th International Conference on Parallel Processing (ICPP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPP.2016.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

相似度搜索问题在计算机图形学、信息检索、统计学、计算生物学和科学数据处理等许多应用领域都有发现。最近已经有一些研究使用GPU来加速k最近邻(kNN)查询,但大多数研究都是利用大量GPU内核开发的蛮力穷举扫描算法,而之前的研究都没有使用GPU来实现n元树结构索引。众所周知,诸如r树之类的多维层次索引树本质上不太适合gpu,因为它们的树遍历和内存访问模式不规则。以不规则的方式遍历分层树结构使得很难利用并行性,因为gpu是为确定性内存访问量身定制的。在这项工作中,我们开发了一种数据并行树遍历算法,并行扫描和回溯(PSB),用于GPU上的kNN查询处理,该算法遍历多维树结构索引,同时避免了warp发散问题。为了利用访问连续内存块的优势,提出的PSB算法对兄弟叶节点进行线性扫描,这增加了优化并行SIMD算法的机会。我们比较了PSB算法与经典的分支定界kNN查询处理算法的性能。我们在真实数据集上的实验表明,PSB算法比分支定界算法快得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parallel Tree Traversal for Nearest Neighbor Query on the GPU
The similarity search problem is found in many application domains including computer graphics, information retrieval, statistics, computational biology, and scientific data processing just to name a few. Recently several studies have been performed to accelerate the k-nearest neighbor (kNN) queries using GPUs, but most of the works develop brute-force exhaustive scanning algorithms leveraging a large number of GPU cores and none of the prior works employ GPUs for an n-ary tree structured index. It is known that multi-dimensional hierarchical indexing trees such as R-trees are inherently not well suited for GPUs because of their irregular tree traversal and memory access patterns. Traversing hierarchical tree structures in an irregular manner makes it difficult to exploit parallelism since GPUs are tailored for deterministic memory accesses. In this work, we develop a data parallel tree traversal algorithm, Parallel Scan and Backtrack (PSB), for kNN query processing on the GPU, this algorithm traverses a multi-dimensional tree structured index while avoiding warp divergence problems. In order to take advantage of accessing contiguous memory blocks, the proposed PSB algorithm performs linear scanning of sibling leaf nodes, which increases the chance to optimize the parallel SIMD algorithm. We evaluate the performance of the PSB algorithm against the classic branch-and-bound kNN query processing algorithm. Our experiments with real datasets show that the PSB algorithm is faster by a large margin than the branch-and-bound algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信