用于快速椭圆曲线密码的恒定时间FPGA加速器的设计与实现

Atil U. Ay, Erdinç Öztürk, F. Rodríguez-Henríquez, E. Savaş
{"title":"用于快速椭圆曲线密码的恒定时间FPGA加速器的设计与实现","authors":"Atil U. Ay, Erdinç Öztürk, F. Rodríguez-Henríquez, E. Savaş","doi":"10.1109/ReConFig.2016.7857163","DOIUrl":null,"url":null,"abstract":"In this paper we present a scalar multiplication hardware architecture that computes a constant-time variable-base point multiplication over the Galbraith-Lin-Scott (GLS) family of binary elliptic curves. Our hardware design is especially tailored for the quadratic extension field F22n, with n = 127, which allows us to attain a security level close to 128 bits. We explore extensively the usage of digit-based and Karatsuba multipliers for performing the quadratic field arithmetic associated to GLS elliptic curves and report the area and time performance obtained by these two types of multipliers. Targeting a XILINX KINTEX-7 FPGA device, we report a hardware implementation of our design that achieves a delay of just 3.98μs for computing one scalar multiplication. This allows us to claim the current speed record for this operation at or around the 128-bit security level for any hardware or software realization reported in the literature.","PeriodicalId":431909,"journal":{"name":"2016 International Conference on ReConFigurable Computing and FPGAs (ReConFig)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Design and implementation of a constant-time FPGA accelerator for fast elliptic curve cryptography\",\"authors\":\"Atil U. Ay, Erdinç Öztürk, F. Rodríguez-Henríquez, E. Savaş\",\"doi\":\"10.1109/ReConFig.2016.7857163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a scalar multiplication hardware architecture that computes a constant-time variable-base point multiplication over the Galbraith-Lin-Scott (GLS) family of binary elliptic curves. Our hardware design is especially tailored for the quadratic extension field F22n, with n = 127, which allows us to attain a security level close to 128 bits. We explore extensively the usage of digit-based and Karatsuba multipliers for performing the quadratic field arithmetic associated to GLS elliptic curves and report the area and time performance obtained by these two types of multipliers. Targeting a XILINX KINTEX-7 FPGA device, we report a hardware implementation of our design that achieves a delay of just 3.98μs for computing one scalar multiplication. This allows us to claim the current speed record for this operation at or around the 128-bit security level for any hardware or software realization reported in the literature.\",\"PeriodicalId\":431909,\"journal\":{\"name\":\"2016 International Conference on ReConFigurable Computing and FPGAs (ReConFig)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on ReConFigurable Computing and FPGAs (ReConFig)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ReConFig.2016.7857163\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on ReConFigurable Computing and FPGAs (ReConFig)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ReConFig.2016.7857163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在本文中,我们提出了一种标量乘法硬件架构,用于计算二元椭圆曲线(Galbraith-Lin-Scott (GLS))家族上的常时变基点乘法。我们的硬件设计是专门为二次扩展域F22n量身定制的,n = 127,这使我们能够获得接近128位的安全级别。我们广泛探索了基于数字和Karatsuba乘法器的使用,用于执行与GLS椭圆曲线相关的二次场算法,并报告了这两种乘法器获得的面积和时间性能。针对XILINX KINTEX-7 FPGA器件,我们报告了我们设计的硬件实现,计算一个标量乘法的延迟仅为3.98μs。这使我们能够在文献中报告的任何硬件或软件实现的128位安全级别上声称该操作的当前速度记录。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design and implementation of a constant-time FPGA accelerator for fast elliptic curve cryptography
In this paper we present a scalar multiplication hardware architecture that computes a constant-time variable-base point multiplication over the Galbraith-Lin-Scott (GLS) family of binary elliptic curves. Our hardware design is especially tailored for the quadratic extension field F22n, with n = 127, which allows us to attain a security level close to 128 bits. We explore extensively the usage of digit-based and Karatsuba multipliers for performing the quadratic field arithmetic associated to GLS elliptic curves and report the area and time performance obtained by these two types of multipliers. Targeting a XILINX KINTEX-7 FPGA device, we report a hardware implementation of our design that achieves a delay of just 3.98μs for computing one scalar multiplication. This allows us to claim the current speed record for this operation at or around the 128-bit security level for any hardware or software realization reported in the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信