基于轨迹的生活模式分析

Hua-mei Chen, Erik Blasch, Nichole Sullivan, Genshe Chen
{"title":"基于轨迹的生活模式分析","authors":"Hua-mei Chen, Erik Blasch, Nichole Sullivan, Genshe Chen","doi":"10.1109/ICIP46576.2022.9897585","DOIUrl":null,"url":null,"abstract":"The large amounts of movement data collected from various sources such as wide area motion imagery (WAMI) and mobile phone apps call for innovative technologies to infer valuable information from these data. In this paper, we present two such tools to extract pattern of life (PoL) information from vehicle trajectories. The first tool, intersection traffic analysis (ITA) detects abnormal traffic patterns in major street intersections; while the second one, frequent trajectory patterns analysis (FTPA) discerns the most frequent trajectory patterns in a given time-interval in the region of concern. Both tools support comprehensive trajectory-based pattern of life situation awareness. Using both simulated trajectories and the measurements extracted from WAMI imagery demonstrate ITA and FTPA utility.","PeriodicalId":387035,"journal":{"name":"2022 IEEE International Conference on Image Processing (ICIP)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trajectory-Based Pattern of Life Analysis\",\"authors\":\"Hua-mei Chen, Erik Blasch, Nichole Sullivan, Genshe Chen\",\"doi\":\"10.1109/ICIP46576.2022.9897585\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The large amounts of movement data collected from various sources such as wide area motion imagery (WAMI) and mobile phone apps call for innovative technologies to infer valuable information from these data. In this paper, we present two such tools to extract pattern of life (PoL) information from vehicle trajectories. The first tool, intersection traffic analysis (ITA) detects abnormal traffic patterns in major street intersections; while the second one, frequent trajectory patterns analysis (FTPA) discerns the most frequent trajectory patterns in a given time-interval in the region of concern. Both tools support comprehensive trajectory-based pattern of life situation awareness. Using both simulated trajectories and the measurements extracted from WAMI imagery demonstrate ITA and FTPA utility.\",\"PeriodicalId\":387035,\"journal\":{\"name\":\"2022 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP46576.2022.9897585\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP46576.2022.9897585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

从广域运动图像(WAMI)和手机应用程序等各种来源收集的大量运动数据需要创新技术来从这些数据中推断有价值的信息。在本文中,我们提出了两个这样的工具来从车辆轨迹中提取生命模式(PoL)信息。第一个工具是交叉口交通分析(ITA),用于检测主要街道交叉口的异常交通模式;第二种是频繁轨迹模式分析(FTPA),它识别出在给定的时间间隔内最常见的轨迹模式。这两种工具都支持全面的基于轨迹的生活态势感知模式。通过模拟轨迹和从WAMI图像中提取的测量数据,证明了ITA和FTPA的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Trajectory-Based Pattern of Life Analysis
The large amounts of movement data collected from various sources such as wide area motion imagery (WAMI) and mobile phone apps call for innovative technologies to infer valuable information from these data. In this paper, we present two such tools to extract pattern of life (PoL) information from vehicle trajectories. The first tool, intersection traffic analysis (ITA) detects abnormal traffic patterns in major street intersections; while the second one, frequent trajectory patterns analysis (FTPA) discerns the most frequent trajectory patterns in a given time-interval in the region of concern. Both tools support comprehensive trajectory-based pattern of life situation awareness. Using both simulated trajectories and the measurements extracted from WAMI imagery demonstrate ITA and FTPA utility.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信