基于遗传算法的多播树pub/sub系统路由

Yanyun Tao, Jian Cao, Yuzhen Zhang, Yang Liu
{"title":"基于遗传算法的多播树pub/sub系统路由","authors":"Yanyun Tao, Jian Cao, Yuzhen Zhang, Yang Liu","doi":"10.1145/3018009.3018012","DOIUrl":null,"url":null,"abstract":"In order to solve the routing problem in pub/sub system, a Genetic algorithm (GA)-based multicast tree approach, denoted by GAMT, is explored to build a Steiner multicast tree. GAMT uses GA and second-shortest paths as compensators to minimize the overall cost of the transmission and the time of routing construction. By using GA optimizer to find appropriate connections, GAMT can achieve a better approximation ratio of multicast tree than the algorithm proposed by Kou, Markowsky and Berman (KMB) without largely increasing time complexity. For testing the multicast tree algorithms, we use the method of Waxman to create thirteen random networks of different size. According to experimental results, GAMT not only achieved lower cost multicast tree than Average Distance Heuristic (ADH), KMB and the method of Melhorn in most cases, but also used a smaller computational time than ADH","PeriodicalId":189252,"journal":{"name":"Proceedings of the 2nd International Conference on Communication and Information Processing","volume":"374 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A genetic algorithm-based multicast tree for routing in pub/sub system\",\"authors\":\"Yanyun Tao, Jian Cao, Yuzhen Zhang, Yang Liu\",\"doi\":\"10.1145/3018009.3018012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to solve the routing problem in pub/sub system, a Genetic algorithm (GA)-based multicast tree approach, denoted by GAMT, is explored to build a Steiner multicast tree. GAMT uses GA and second-shortest paths as compensators to minimize the overall cost of the transmission and the time of routing construction. By using GA optimizer to find appropriate connections, GAMT can achieve a better approximation ratio of multicast tree than the algorithm proposed by Kou, Markowsky and Berman (KMB) without largely increasing time complexity. For testing the multicast tree algorithms, we use the method of Waxman to create thirteen random networks of different size. According to experimental results, GAMT not only achieved lower cost multicast tree than Average Distance Heuristic (ADH), KMB and the method of Melhorn in most cases, but also used a smaller computational time than ADH\",\"PeriodicalId\":189252,\"journal\":{\"name\":\"Proceedings of the 2nd International Conference on Communication and Information Processing\",\"volume\":\"374 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2nd International Conference on Communication and Information Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3018009.3018012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd International Conference on Communication and Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3018009.3018012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了解决pub/sub系统中的路由问题,探索了一种基于遗传算法的组播树方法,即gmt,来构建Steiner组播树。GAMT使用遗传算法和第二最短路径作为补偿器,以最小化传输的总成本和路由构建的时间。GAMT通过使用GA优化器寻找合适的连接,在不大幅增加时间复杂度的前提下,获得了比Kou, Markowsky和Berman (KMB)算法更好的组播树逼近率。为了测试组播树算法,我们使用Waxman方法创建了13个不同大小的随机网络。实验结果表明,GAMT不仅在大多数情况下比平均距离启发式(ADH)、KMB和Melhorn方法获得更低的组播树成本,而且比ADH方法的计算时间更短
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A genetic algorithm-based multicast tree for routing in pub/sub system
In order to solve the routing problem in pub/sub system, a Genetic algorithm (GA)-based multicast tree approach, denoted by GAMT, is explored to build a Steiner multicast tree. GAMT uses GA and second-shortest paths as compensators to minimize the overall cost of the transmission and the time of routing construction. By using GA optimizer to find appropriate connections, GAMT can achieve a better approximation ratio of multicast tree than the algorithm proposed by Kou, Markowsky and Berman (KMB) without largely increasing time complexity. For testing the multicast tree algorithms, we use the method of Waxman to create thirteen random networks of different size. According to experimental results, GAMT not only achieved lower cost multicast tree than Average Distance Heuristic (ADH), KMB and the method of Melhorn in most cases, but also used a smaller computational time than ADH
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信