基于多尺度贝叶斯网络的合成孔径雷达图像分割

Z. Jianguang, Li Yongxia, An Zhihong
{"title":"基于多尺度贝叶斯网络的合成孔径雷达图像分割","authors":"Z. Jianguang, Li Yongxia, An Zhihong","doi":"10.1109/CISP.2013.6745244","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a multi-scale Bayesian networks model and its inference algorithm. We use the multi-scale Bayesian networks model to segment the Synthetic Aperture Radar (SAR) image. The multi-scale Bayesian networks is constructed accordance with the multi-scale sequence of SAR images, whose MAP value is performed using the Belief Propagation (BP) algorithm and the corresponding parameter estimation is finished by the Expectation-Maximization (EM) algorithm. Experimental results demonstrate that the proposed multi-scale Bayesian networks model outperform the single-scale Bayesian network model and Markov Random Field - Intersecting Cortical Model (MRF-ICM).","PeriodicalId":442320,"journal":{"name":"2013 6th International Congress on Image and Signal Processing (CISP)","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthetic aperture radar image segmentation based on multi-scale Bayesian networks\",\"authors\":\"Z. Jianguang, Li Yongxia, An Zhihong\",\"doi\":\"10.1109/CISP.2013.6745244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a multi-scale Bayesian networks model and its inference algorithm. We use the multi-scale Bayesian networks model to segment the Synthetic Aperture Radar (SAR) image. The multi-scale Bayesian networks is constructed accordance with the multi-scale sequence of SAR images, whose MAP value is performed using the Belief Propagation (BP) algorithm and the corresponding parameter estimation is finished by the Expectation-Maximization (EM) algorithm. Experimental results demonstrate that the proposed multi-scale Bayesian networks model outperform the single-scale Bayesian network model and Markov Random Field - Intersecting Cortical Model (MRF-ICM).\",\"PeriodicalId\":442320,\"journal\":{\"name\":\"2013 6th International Congress on Image and Signal Processing (CISP)\",\"volume\":\"96 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 6th International Congress on Image and Signal Processing (CISP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISP.2013.6745244\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 6th International Congress on Image and Signal Processing (CISP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISP.2013.6745244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种多尺度贝叶斯网络模型及其推理算法。采用多尺度贝叶斯网络模型对合成孔径雷达(SAR)图像进行分割。根据SAR图像的多尺度序列构建多尺度贝叶斯网络,利用BP算法对SAR图像的MAP值进行估计,并利用EM算法对SAR图像的MAP值进行估计。实验结果表明,所提出的多尺度贝叶斯网络模型优于单尺度贝叶斯网络模型和马尔可夫随机场-相交皮质模型(MRF-ICM)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthetic aperture radar image segmentation based on multi-scale Bayesian networks
In this paper, we propose a multi-scale Bayesian networks model and its inference algorithm. We use the multi-scale Bayesian networks model to segment the Synthetic Aperture Radar (SAR) image. The multi-scale Bayesian networks is constructed accordance with the multi-scale sequence of SAR images, whose MAP value is performed using the Belief Propagation (BP) algorithm and the corresponding parameter estimation is finished by the Expectation-Maximization (EM) algorithm. Experimental results demonstrate that the proposed multi-scale Bayesian networks model outperform the single-scale Bayesian network model and Markov Random Field - Intersecting Cortical Model (MRF-ICM).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信