E. Souza, Adriano Oliveira, Gustavo H. F. M. Oliveira, Alisson Silva, Diego Santos
{"title":"意见聚类的无监督粒子群优化方法","authors":"E. Souza, Adriano Oliveira, Gustavo H. F. M. Oliveira, Alisson Silva, Diego Santos","doi":"10.1109/BRACIS.2016.063","DOIUrl":null,"url":null,"abstract":"Supervised machine learning (ML) and lexicon-based are the most frequent approaches for opinion mining (OM), but they require considerable effort for preparing the training data and to build the opinion lexicon, respectively. This paper presents two unsupervised approaches for OM based on Particle Swarm Optimization (PSO). The PSO-based approaches were evaluated by eighteen experiments with different corpora types, domains, language, class balancing and pre-processing techniques. The proposed approaches achieved better accuracy on twelve experiments. Best results were obtained on corpora with a reduced number of dimensions and for specific domains. Best accuracy (0.79) was obtained by Discrete IDPSO on the OBCC corpus, outperforming supervised ML and lexicon-based approaches for this corpus.","PeriodicalId":183149,"journal":{"name":"2016 5th Brazilian Conference on Intelligent Systems (BRACIS)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"An Unsupervised Particle Swarm Optimization Approach for Opinion Clustering\",\"authors\":\"E. Souza, Adriano Oliveira, Gustavo H. F. M. Oliveira, Alisson Silva, Diego Santos\",\"doi\":\"10.1109/BRACIS.2016.063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Supervised machine learning (ML) and lexicon-based are the most frequent approaches for opinion mining (OM), but they require considerable effort for preparing the training data and to build the opinion lexicon, respectively. This paper presents two unsupervised approaches for OM based on Particle Swarm Optimization (PSO). The PSO-based approaches were evaluated by eighteen experiments with different corpora types, domains, language, class balancing and pre-processing techniques. The proposed approaches achieved better accuracy on twelve experiments. Best results were obtained on corpora with a reduced number of dimensions and for specific domains. Best accuracy (0.79) was obtained by Discrete IDPSO on the OBCC corpus, outperforming supervised ML and lexicon-based approaches for this corpus.\",\"PeriodicalId\":183149,\"journal\":{\"name\":\"2016 5th Brazilian Conference on Intelligent Systems (BRACIS)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 5th Brazilian Conference on Intelligent Systems (BRACIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BRACIS.2016.063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 5th Brazilian Conference on Intelligent Systems (BRACIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BRACIS.2016.063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Unsupervised Particle Swarm Optimization Approach for Opinion Clustering
Supervised machine learning (ML) and lexicon-based are the most frequent approaches for opinion mining (OM), but they require considerable effort for preparing the training data and to build the opinion lexicon, respectively. This paper presents two unsupervised approaches for OM based on Particle Swarm Optimization (PSO). The PSO-based approaches were evaluated by eighteen experiments with different corpora types, domains, language, class balancing and pre-processing techniques. The proposed approaches achieved better accuracy on twelve experiments. Best results were obtained on corpora with a reduced number of dimensions and for specific domains. Best accuracy (0.79) was obtained by Discrete IDPSO on the OBCC corpus, outperforming supervised ML and lexicon-based approaches for this corpus.