平稳不可压缩Navier-Stokes方程的Scott-Vogelius离散化的reynolds -鲁棒预条件

P. Farrell, L. Mitchell, L. R. Scott, F. Wechsung
{"title":"平稳不可压缩Navier-Stokes方程的Scott-Vogelius离散化的reynolds -鲁棒预条件","authors":"P. Farrell, L. Mitchell, L. R. Scott, F. Wechsung","doi":"10.5802/smai-jcm.72","DOIUrl":null,"url":null,"abstract":"Augmented Lagrangian preconditioners have successfully yielded Reynolds-robust preconditioners for the stationary incompressible Navier-Stokes equations, but only for specific discretizations. The discretizations for which these preconditioners have been designed possess error estimates which depend on the Reynolds number, with the discretization error deteriorating as the Reynolds number is increased. In this paper we present an augmented Lagrangian preconditioner for the Scott-Vogelius discretization on barycentrically-refined meshes. This achieves both Reynolds-robust performance and Reynolds-robust error estimates. A key consideration is the design of a suitable space decomposition that captures the kernel of the grad-div term added to control the Schur complement; the same barycentric refinement that guarantees inf-sup stability also provides a local decomposition of the kernel of the divergence. The robustness of the scheme is confirmed by numerical experiments in two and three dimensions.","PeriodicalId":376888,"journal":{"name":"The SMAI journal of computational mathematics","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"A Reynolds-robust preconditioner for the Scott-Vogelius discretization of the stationary incompressible Navier-Stokes equations\",\"authors\":\"P. Farrell, L. Mitchell, L. R. Scott, F. Wechsung\",\"doi\":\"10.5802/smai-jcm.72\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Augmented Lagrangian preconditioners have successfully yielded Reynolds-robust preconditioners for the stationary incompressible Navier-Stokes equations, but only for specific discretizations. The discretizations for which these preconditioners have been designed possess error estimates which depend on the Reynolds number, with the discretization error deteriorating as the Reynolds number is increased. In this paper we present an augmented Lagrangian preconditioner for the Scott-Vogelius discretization on barycentrically-refined meshes. This achieves both Reynolds-robust performance and Reynolds-robust error estimates. A key consideration is the design of a suitable space decomposition that captures the kernel of the grad-div term added to control the Schur complement; the same barycentric refinement that guarantees inf-sup stability also provides a local decomposition of the kernel of the divergence. The robustness of the scheme is confirmed by numerical experiments in two and three dimensions.\",\"PeriodicalId\":376888,\"journal\":{\"name\":\"The SMAI journal of computational mathematics\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The SMAI journal of computational mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/smai-jcm.72\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The SMAI journal of computational mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/smai-jcm.72","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

增广拉格朗日预条件已经成功地为稳态不可压缩Navier-Stokes方程生成了reynolds -鲁棒预条件,但仅适用于特定的离散化。这些预调节器所设计的离散化具有依赖于雷诺数的误差估计,且离散化误差随着雷诺数的增加而恶化。本文给出了重心精细化网格上Scott-Vogelius离散化的增广拉格朗日预条件。这既实现了雷诺鲁棒性能,又实现了雷诺鲁棒误差估计。一个关键的考虑因素是设计一个合适的空间分解,以捕获添加到控制Schur补的grad-div项的内核;同样的以重心为中心的细化保证了内支撑的稳定性,也提供了散度核的局部分解。通过二维和三维数值实验验证了该方案的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Reynolds-robust preconditioner for the Scott-Vogelius discretization of the stationary incompressible Navier-Stokes equations
Augmented Lagrangian preconditioners have successfully yielded Reynolds-robust preconditioners for the stationary incompressible Navier-Stokes equations, but only for specific discretizations. The discretizations for which these preconditioners have been designed possess error estimates which depend on the Reynolds number, with the discretization error deteriorating as the Reynolds number is increased. In this paper we present an augmented Lagrangian preconditioner for the Scott-Vogelius discretization on barycentrically-refined meshes. This achieves both Reynolds-robust performance and Reynolds-robust error estimates. A key consideration is the design of a suitable space decomposition that captures the kernel of the grad-div term added to control the Schur complement; the same barycentric refinement that guarantees inf-sup stability also provides a local decomposition of the kernel of the divergence. The robustness of the scheme is confirmed by numerical experiments in two and three dimensions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信