利用形状增长模式识别物体

A. Cheddad, H. Kusetogullari, Håkan Grahn
{"title":"利用形状增长模式识别物体","authors":"A. Cheddad, H. Kusetogullari, Håkan Grahn","doi":"10.1109/ISPA.2017.8073567","DOIUrl":null,"url":null,"abstract":"This paper proposes a preprocessing stage to augment the bank of features that one can retrieve from binary images to help increase the accuracy of pattern recognition algorithms. To this end, by applying successive dilations to a given shape, we can capture a new dimension of its vital characteristics which we term hereafter: the shape growth pattern (SGP). This work investigates the feasibility of such a notion and also builds upon our prior work on structure preserving dilation using Delaunay triangulation. Experiments on two public data sets are conducted, including comparisons to existing algorithms. We deployed two renowned machine learning methods into the classification process (i.e., convolutional neural network-CNN- and random forests-RF-) since they perform well in pattern recognition tasks. The results show a clear improvement of the proposed approach's classification accuracy (especially for data sets with limited training samples) as well as robustness against noise when compared to existing methods.","PeriodicalId":117602,"journal":{"name":"Proceedings of the 10th International Symposium on Image and Signal Processing and Analysis","volume":"21 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Object recognition using shape growth pattern\",\"authors\":\"A. Cheddad, H. Kusetogullari, Håkan Grahn\",\"doi\":\"10.1109/ISPA.2017.8073567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a preprocessing stage to augment the bank of features that one can retrieve from binary images to help increase the accuracy of pattern recognition algorithms. To this end, by applying successive dilations to a given shape, we can capture a new dimension of its vital characteristics which we term hereafter: the shape growth pattern (SGP). This work investigates the feasibility of such a notion and also builds upon our prior work on structure preserving dilation using Delaunay triangulation. Experiments on two public data sets are conducted, including comparisons to existing algorithms. We deployed two renowned machine learning methods into the classification process (i.e., convolutional neural network-CNN- and random forests-RF-) since they perform well in pattern recognition tasks. The results show a clear improvement of the proposed approach's classification accuracy (especially for data sets with limited training samples) as well as robustness against noise when compared to existing methods.\",\"PeriodicalId\":117602,\"journal\":{\"name\":\"Proceedings of the 10th International Symposium on Image and Signal Processing and Analysis\",\"volume\":\"21 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 10th International Symposium on Image and Signal Processing and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPA.2017.8073567\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th International Symposium on Image and Signal Processing and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPA.2017.8073567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文提出了一个预处理阶段,以增加可以从二值图像中检索的特征库,以帮助提高模式识别算法的准确性。为此,通过将连续膨胀应用于给定形状,我们可以捕获其重要特征的新维度,我们将其称为形状生长模式(SGP)。本研究探讨了这一概念的可行性,并建立在我们先前使用Delaunay三角剖分法研究结构保留膨胀的基础上。在两个公共数据集上进行了实验,包括与现有算法的比较。我们在分类过程中部署了两种著名的机器学习方法(即卷积神经网络- cnn -和随机森林- rf -),因为它们在模式识别任务中表现良好。结果表明,与现有方法相比,该方法的分类精度(特别是对于训练样本有限的数据集)和抗噪声鲁棒性都有明显提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Object recognition using shape growth pattern
This paper proposes a preprocessing stage to augment the bank of features that one can retrieve from binary images to help increase the accuracy of pattern recognition algorithms. To this end, by applying successive dilations to a given shape, we can capture a new dimension of its vital characteristics which we term hereafter: the shape growth pattern (SGP). This work investigates the feasibility of such a notion and also builds upon our prior work on structure preserving dilation using Delaunay triangulation. Experiments on two public data sets are conducted, including comparisons to existing algorithms. We deployed two renowned machine learning methods into the classification process (i.e., convolutional neural network-CNN- and random forests-RF-) since they perform well in pattern recognition tasks. The results show a clear improvement of the proposed approach's classification accuracy (especially for data sets with limited training samples) as well as robustness against noise when compared to existing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信