权重不平衡有向图上的连续时间分布式资源分配算法

Yanan Zhu, Wenwu Yu, G. Wen, Duxin Chen
{"title":"权重不平衡有向图上的连续时间分布式资源分配算法","authors":"Yanan Zhu, Wenwu Yu, G. Wen, Duxin Chen","doi":"10.1109/CCDC.2019.8833235","DOIUrl":null,"url":null,"abstract":"This paper studies a resource allocation problem subject to the coupling resource constraint over a strongly connected and weight-unbalanced digraph, where the global cost function is composed of a sum of the agents’s local cost functions. To solve the problem in a distributed way, we design a continuous-time algorithm by injecting a graph balancing technique into a primal-dual gradient flow algorithm. We show that the optimal variable generated by the proposed algorithm asymptotically converges to the optimal solution when the local cost functions are strongly convex and and their gradients satisfy Lipschitz conditions. A numerical simulation verifies the theoretical result.","PeriodicalId":254705,"journal":{"name":"2019 Chinese Control And Decision Conference (CCDC)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Continuous-time algorithm for distributed resource allocation over a weight-unbalanced digraph\",\"authors\":\"Yanan Zhu, Wenwu Yu, G. Wen, Duxin Chen\",\"doi\":\"10.1109/CCDC.2019.8833235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies a resource allocation problem subject to the coupling resource constraint over a strongly connected and weight-unbalanced digraph, where the global cost function is composed of a sum of the agents’s local cost functions. To solve the problem in a distributed way, we design a continuous-time algorithm by injecting a graph balancing technique into a primal-dual gradient flow algorithm. We show that the optimal variable generated by the proposed algorithm asymptotically converges to the optimal solution when the local cost functions are strongly convex and and their gradients satisfy Lipschitz conditions. A numerical simulation verifies the theoretical result.\",\"PeriodicalId\":254705,\"journal\":{\"name\":\"2019 Chinese Control And Decision Conference (CCDC)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Chinese Control And Decision Conference (CCDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCDC.2019.8833235\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Chinese Control And Decision Conference (CCDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCDC.2019.8833235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文研究了在强连通且权重不平衡的有向图上的耦合资源约束下的资源分配问题,其中全局成本函数由智能体的局部成本函数和组成。为了以分布式方式解决这个问题,我们设计了一个连续时间算法,将图平衡技术注入到原始对偶梯度流算法中。当局部代价函数为强凸且其梯度满足Lipschitz条件时,本文算法生成的最优变量渐近收敛于最优解。数值模拟验证了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Continuous-time algorithm for distributed resource allocation over a weight-unbalanced digraph
This paper studies a resource allocation problem subject to the coupling resource constraint over a strongly connected and weight-unbalanced digraph, where the global cost function is composed of a sum of the agents’s local cost functions. To solve the problem in a distributed way, we design a continuous-time algorithm by injecting a graph balancing technique into a primal-dual gradient flow algorithm. We show that the optimal variable generated by the proposed algorithm asymptotically converges to the optimal solution when the local cost functions are strongly convex and and their gradients satisfy Lipschitz conditions. A numerical simulation verifies the theoretical result.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信