生物医学应用的校准概率预测

A. Lambrou, H. Papadopoulos, A. Gammerman
{"title":"生物医学应用的校准概率预测","authors":"A. Lambrou, H. Papadopoulos, A. Gammerman","doi":"10.1109/BIBE.2012.6399676","DOIUrl":null,"url":null,"abstract":"Venn Prediction (VP) is a machine learning framework that can be used to develop methods that provide well-calibrated probabilistic outputs. Unlike other probabilistic methods, the VP framework guarantees validity under the assumption that the data are independently and identically distributed (i.i.d.). Well-calibrated probabilistic outputs are of great importance, especially in biomedical applications. In this work, we develop a new Venn Predictor based on the Sequential Minimal Optimisation (SMO) algorithm and we examine its application to two real-world biomedical problems. We demonstrate in our results that our method can provide calibrated probabilistic outputs for predictions without any loss of accuracy. Moreover, we compare the outputs of our method with the probability outputs of SMO with logistic regression.","PeriodicalId":330164,"journal":{"name":"2012 IEEE 12th International Conference on Bioinformatics & Bioengineering (BIBE)","volume":"197 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Calibrated probabilistic predictions for biomedical applications\",\"authors\":\"A. Lambrou, H. Papadopoulos, A. Gammerman\",\"doi\":\"10.1109/BIBE.2012.6399676\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Venn Prediction (VP) is a machine learning framework that can be used to develop methods that provide well-calibrated probabilistic outputs. Unlike other probabilistic methods, the VP framework guarantees validity under the assumption that the data are independently and identically distributed (i.i.d.). Well-calibrated probabilistic outputs are of great importance, especially in biomedical applications. In this work, we develop a new Venn Predictor based on the Sequential Minimal Optimisation (SMO) algorithm and we examine its application to two real-world biomedical problems. We demonstrate in our results that our method can provide calibrated probabilistic outputs for predictions without any loss of accuracy. Moreover, we compare the outputs of our method with the probability outputs of SMO with logistic regression.\",\"PeriodicalId\":330164,\"journal\":{\"name\":\"2012 IEEE 12th International Conference on Bioinformatics & Bioengineering (BIBE)\",\"volume\":\"197 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 12th International Conference on Bioinformatics & Bioengineering (BIBE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBE.2012.6399676\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 12th International Conference on Bioinformatics & Bioengineering (BIBE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE.2012.6399676","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

维恩预测(VP)是一种机器学习框架,可用于开发提供校准良好的概率输出的方法。与其他概率方法不同,VP框架在假设数据是独立且同分布(i.i.d)的情况下保证有效性。校准良好的概率输出非常重要,特别是在生物医学应用中。在这项工作中,我们开发了一种新的基于顺序最小优化(SMO)算法的维恩预测器,并研究了其在两个现实世界生物医学问题中的应用。我们在我们的结果中证明,我们的方法可以为预测提供校准的概率输出,而不会损失任何准确性。此外,我们将我们的方法的输出与SMO的逻辑回归的概率输出进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Calibrated probabilistic predictions for biomedical applications
Venn Prediction (VP) is a machine learning framework that can be used to develop methods that provide well-calibrated probabilistic outputs. Unlike other probabilistic methods, the VP framework guarantees validity under the assumption that the data are independently and identically distributed (i.i.d.). Well-calibrated probabilistic outputs are of great importance, especially in biomedical applications. In this work, we develop a new Venn Predictor based on the Sequential Minimal Optimisation (SMO) algorithm and we examine its application to two real-world biomedical problems. We demonstrate in our results that our method can provide calibrated probabilistic outputs for predictions without any loss of accuracy. Moreover, we compare the outputs of our method with the probability outputs of SMO with logistic regression.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信