ISODATA聚类算法在矢量超级计算机上的应用

G. A. Riccardi, P.H. Schow
{"title":"ISODATA聚类算法在矢量超级计算机上的应用","authors":"G. A. Riccardi, P.H. Schow","doi":"10.1109/SUPERC.1988.74141","DOIUrl":null,"url":null,"abstract":"Cluster analysis is an interdisciplinary study which involves the grouping of similar objects based on their measured attributes. The purpose of a cluster analysis is to investigate the structure and organization of the objects being studied. A description is given of the adaptation of the ISODATA clustering algorithm for vector supercomputer execution. On the CYBER 205, the algorithm runs 30 times faster than the original algorithm on the CYBER 205 using full automatic vectorization and 300 times faster than on a VAX 11/780. The major source of improvement over automatic vectorization is achieved by reorganizing the data structures used by the program. The modified algorithm yields increased performance on any vector computer.<<ETX>>","PeriodicalId":103561,"journal":{"name":"Proceedings Supercomputing Vol.II: Science and Applications","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Adaptation of the ISODATA clustering algorithm for vector supercomputer execution\",\"authors\":\"G. A. Riccardi, P.H. Schow\",\"doi\":\"10.1109/SUPERC.1988.74141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cluster analysis is an interdisciplinary study which involves the grouping of similar objects based on their measured attributes. The purpose of a cluster analysis is to investigate the structure and organization of the objects being studied. A description is given of the adaptation of the ISODATA clustering algorithm for vector supercomputer execution. On the CYBER 205, the algorithm runs 30 times faster than the original algorithm on the CYBER 205 using full automatic vectorization and 300 times faster than on a VAX 11/780. The major source of improvement over automatic vectorization is achieved by reorganizing the data structures used by the program. The modified algorithm yields increased performance on any vector computer.<<ETX>>\",\"PeriodicalId\":103561,\"journal\":{\"name\":\"Proceedings Supercomputing Vol.II: Science and Applications\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Supercomputing Vol.II: Science and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SUPERC.1988.74141\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Supercomputing Vol.II: Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SUPERC.1988.74141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

聚类分析是一门跨学科的研究,它涉及到根据它们的测量属性对相似的对象进行分组。聚类分析的目的是调查被研究对象的结构和组织。描述了ISODATA聚类算法在矢量超级计算机执行中的适应性。在CYBER 205上,该算法运行速度比使用全自动矢量化的CYBER 205上的原始算法快30倍,比VAX 11/780快300倍。改进自动向量化的主要来源是通过重新组织程序使用的数据结构来实现的。改进后的算法在任何矢量计算机上都能提高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptation of the ISODATA clustering algorithm for vector supercomputer execution
Cluster analysis is an interdisciplinary study which involves the grouping of similar objects based on their measured attributes. The purpose of a cluster analysis is to investigate the structure and organization of the objects being studied. A description is given of the adaptation of the ISODATA clustering algorithm for vector supercomputer execution. On the CYBER 205, the algorithm runs 30 times faster than the original algorithm on the CYBER 205 using full automatic vectorization and 300 times faster than on a VAX 11/780. The major source of improvement over automatic vectorization is achieved by reorganizing the data structures used by the program. The modified algorithm yields increased performance on any vector computer.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信