EMP信号测量系统的自适应小波去噪方法

Shi Lihua, Chen Bin, Zhou Binhua, Gao Cheng
{"title":"EMP信号测量系统的自适应小波去噪方法","authors":"Shi Lihua, Chen Bin, Zhou Binhua, Gao Cheng","doi":"10.1109/CEEM.2000.853917","DOIUrl":null,"url":null,"abstract":"An adaptive wavelet denoising method is proposed to eliminate the noise induced by the measuring system of EMP signals. This method employs a threshold-searching strategy to select an optimal denoising threshold for a given system. Wavelet decomposition and reconstruction are combined with neural network nonlinear threshold-filtering units in the new denoising algorithm. Based on a group of training signal, the denoising threshold can be learned adaptively. The training algorithm and application examples are given in this paper.","PeriodicalId":153945,"journal":{"name":"Proceedings. Asia-Pacific Conference on Environmental Electromagnetics. CEEM'2000 (IEEE Cat. No.00EX402)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An adaptive wavelet denoising method for the measuring system of EMP signals\",\"authors\":\"Shi Lihua, Chen Bin, Zhou Binhua, Gao Cheng\",\"doi\":\"10.1109/CEEM.2000.853917\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An adaptive wavelet denoising method is proposed to eliminate the noise induced by the measuring system of EMP signals. This method employs a threshold-searching strategy to select an optimal denoising threshold for a given system. Wavelet decomposition and reconstruction are combined with neural network nonlinear threshold-filtering units in the new denoising algorithm. Based on a group of training signal, the denoising threshold can be learned adaptively. The training algorithm and application examples are given in this paper.\",\"PeriodicalId\":153945,\"journal\":{\"name\":\"Proceedings. Asia-Pacific Conference on Environmental Electromagnetics. CEEM'2000 (IEEE Cat. No.00EX402)\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. Asia-Pacific Conference on Environmental Electromagnetics. CEEM'2000 (IEEE Cat. No.00EX402)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEEM.2000.853917\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Asia-Pacific Conference on Environmental Electromagnetics. CEEM'2000 (IEEE Cat. No.00EX402)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEEM.2000.853917","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

针对电磁脉冲信号测量系统中产生的噪声,提出了一种自适应小波去噪方法。该方法采用阈值搜索策略,对给定系统选择最优去噪阈值。在新的去噪算法中,将小波分解和重构与神经网络非线性阈值滤波单元相结合。基于一组训练信号,自适应学习去噪阈值。文中给出了训练算法和应用实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An adaptive wavelet denoising method for the measuring system of EMP signals
An adaptive wavelet denoising method is proposed to eliminate the noise induced by the measuring system of EMP signals. This method employs a threshold-searching strategy to select an optimal denoising threshold for a given system. Wavelet decomposition and reconstruction are combined with neural network nonlinear threshold-filtering units in the new denoising algorithm. Based on a group of training signal, the denoising threshold can be learned adaptively. The training algorithm and application examples are given in this paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信