基于维基百科文本和分类嵌入维基百科标题

Chi-Yen Chen, Wei-Yun Ma
{"title":"基于维基百科文本和分类嵌入维基百科标题","authors":"Chi-Yen Chen, Wei-Yun Ma","doi":"10.1109/IALP.2017.8300566","DOIUrl":null,"url":null,"abstract":"Distributed word representation is widely used in many NLP tasks and knowledge-based resources also provide valuable information. Comparing to conventional knowledge bases, Wikipedia provides semi-structural data other than structural data. We argue that a Wikipedia title's categories can help complement the title's meaning besides Wikipedia text, so the categories should be utilized to improve the title's embedding. We propose two directions of using categories, cooperating with conventional context-based approaches, to generate embeddings of Wikipedia titles. We conduct extensively large scale experiments on the generated title embeddings on Chinese Wikipedia. Experiments on word similarity task and analogical reasoning task show that our approaches significantly outperform conventional context-based approaches.","PeriodicalId":183586,"journal":{"name":"2017 International Conference on Asian Language Processing (IALP)","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Embedding wikipedia title based on its wikipedia text and categories\",\"authors\":\"Chi-Yen Chen, Wei-Yun Ma\",\"doi\":\"10.1109/IALP.2017.8300566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Distributed word representation is widely used in many NLP tasks and knowledge-based resources also provide valuable information. Comparing to conventional knowledge bases, Wikipedia provides semi-structural data other than structural data. We argue that a Wikipedia title's categories can help complement the title's meaning besides Wikipedia text, so the categories should be utilized to improve the title's embedding. We propose two directions of using categories, cooperating with conventional context-based approaches, to generate embeddings of Wikipedia titles. We conduct extensively large scale experiments on the generated title embeddings on Chinese Wikipedia. Experiments on word similarity task and analogical reasoning task show that our approaches significantly outperform conventional context-based approaches.\",\"PeriodicalId\":183586,\"journal\":{\"name\":\"2017 International Conference on Asian Language Processing (IALP)\",\"volume\":\"92 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Asian Language Processing (IALP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IALP.2017.8300566\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Asian Language Processing (IALP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IALP.2017.8300566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

分布式词表示广泛应用于许多NLP任务中,基于知识的资源也提供了有价值的信息。与传统知识库相比,Wikipedia提供的是半结构化数据,而不是结构化数据。我们认为,维基百科标题的类别可以帮助补充标题的含义除了维基百科的文本,所以应该利用类别来提高标题的嵌入。我们提出了两个使用分类的方向,与传统的基于上下文的方法合作,来生成维基百科标题的嵌入。我们对中文维基百科上生成的标题嵌入进行了广泛的大规模实验。在单词相似度任务和类比推理任务上的实验表明,我们的方法明显优于传统的基于上下文的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Embedding wikipedia title based on its wikipedia text and categories
Distributed word representation is widely used in many NLP tasks and knowledge-based resources also provide valuable information. Comparing to conventional knowledge bases, Wikipedia provides semi-structural data other than structural data. We argue that a Wikipedia title's categories can help complement the title's meaning besides Wikipedia text, so the categories should be utilized to improve the title's embedding. We propose two directions of using categories, cooperating with conventional context-based approaches, to generate embeddings of Wikipedia titles. We conduct extensively large scale experiments on the generated title embeddings on Chinese Wikipedia. Experiments on word similarity task and analogical reasoning task show that our approaches significantly outperform conventional context-based approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信