飞行轨迹聚类:一个使用计划路线数据的框架

C. Morales, S. Moral
{"title":"飞行轨迹聚类:一个使用计划路线数据的框架","authors":"C. Morales, S. Moral","doi":"10.1109/ISADS45777.2019.9155962","DOIUrl":null,"url":null,"abstract":"Clustering is an efficient method for handling large amounts of complex data. More specifically, k-means clustering is an optimized algorithm based on Euclidean distance measurement that has been applied to aircraft trajectory classification. In this paper we present a research line based on performing a preprocessing of trajectory coordinates and flight plan data to obtain additional variables, as adapted to the k-means clustering algorithm as possible, in order to support supervised trajectory classification.","PeriodicalId":331050,"journal":{"name":"2019 IEEE 14th International Symposium on Autonomous Decentralized System (ISADS)","volume":"1 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Flight Trajectory Clustering: a framework that uses Planned Route data\",\"authors\":\"C. Morales, S. Moral\",\"doi\":\"10.1109/ISADS45777.2019.9155962\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Clustering is an efficient method for handling large amounts of complex data. More specifically, k-means clustering is an optimized algorithm based on Euclidean distance measurement that has been applied to aircraft trajectory classification. In this paper we present a research line based on performing a preprocessing of trajectory coordinates and flight plan data to obtain additional variables, as adapted to the k-means clustering algorithm as possible, in order to support supervised trajectory classification.\",\"PeriodicalId\":331050,\"journal\":{\"name\":\"2019 IEEE 14th International Symposium on Autonomous Decentralized System (ISADS)\",\"volume\":\"1 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 14th International Symposium on Autonomous Decentralized System (ISADS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISADS45777.2019.9155962\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 14th International Symposium on Autonomous Decentralized System (ISADS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISADS45777.2019.9155962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

聚类是处理大量复杂数据的有效方法。更具体地说,k-means聚类是一种基于欧氏距离测量的优化算法,已应用于飞机轨迹分类。在本文中,我们提出了一种基于对轨迹坐标和飞行计划数据进行预处理以获得附加变量的研究线,以尽可能适应k-means聚类算法,以支持监督轨迹分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flight Trajectory Clustering: a framework that uses Planned Route data
Clustering is an efficient method for handling large amounts of complex data. More specifically, k-means clustering is an optimized algorithm based on Euclidean distance measurement that has been applied to aircraft trajectory classification. In this paper we present a research line based on performing a preprocessing of trajectory coordinates and flight plan data to obtain additional variables, as adapted to the k-means clustering algorithm as possible, in order to support supervised trajectory classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信