{"title":"基于图卷积神经网络的近红外图像着色","authors":"D. Valsesia, Giulia Fracastoro, E. Magli","doi":"10.1109/VCIP49819.2020.9301839","DOIUrl":null,"url":null,"abstract":"Colorization of near-infrared (NIR) images is a challenging problem due to the different material properties at the infared wavelenghts, thus reducing the correlation with visible images. In this paper, we study how graph-convolutional neural networks allow exploiting a more powerful inductive bias than standard CNNs, in the form of non-local self-similiarity. Its impact is evaluated by showing how training with mean squared error only as loss leads to poor results with a standard CNN, while the graph-convolutional network produces significantly sharper and more realistic colorizations.","PeriodicalId":431880,"journal":{"name":"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)","volume":"487 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"NIR image colorization with graph-convolutional neural networks\",\"authors\":\"D. Valsesia, Giulia Fracastoro, E. Magli\",\"doi\":\"10.1109/VCIP49819.2020.9301839\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Colorization of near-infrared (NIR) images is a challenging problem due to the different material properties at the infared wavelenghts, thus reducing the correlation with visible images. In this paper, we study how graph-convolutional neural networks allow exploiting a more powerful inductive bias than standard CNNs, in the form of non-local self-similiarity. Its impact is evaluated by showing how training with mean squared error only as loss leads to poor results with a standard CNN, while the graph-convolutional network produces significantly sharper and more realistic colorizations.\",\"PeriodicalId\":431880,\"journal\":{\"name\":\"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)\",\"volume\":\"487 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VCIP49819.2020.9301839\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP49819.2020.9301839","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
NIR image colorization with graph-convolutional neural networks
Colorization of near-infrared (NIR) images is a challenging problem due to the different material properties at the infared wavelenghts, thus reducing the correlation with visible images. In this paper, we study how graph-convolutional neural networks allow exploiting a more powerful inductive bias than standard CNNs, in the form of non-local self-similiarity. Its impact is evaluated by showing how training with mean squared error only as loss leads to poor results with a standard CNN, while the graph-convolutional network produces significantly sharper and more realistic colorizations.