GENE:全局事件网络嵌入

Qi Zeng, Manling Li, T. Lai, Heng Ji, Mohit Bansal, Hanghang Tong
{"title":"GENE:全局事件网络嵌入","authors":"Qi Zeng, Manling Li, T. Lai, Heng Ji, Mohit Bansal, Hanghang Tong","doi":"10.18653/V1/11.TEXTGRAPHS-1.5","DOIUrl":null,"url":null,"abstract":"Current methods for event representation ignore related events in a corpus-level global context. For a deep and comprehensive understanding of complex events, we introduce a new task, Event Network Embedding, which aims to represent events by capturing the connections among events. We propose a novel framework, Global Event Network Embedding (GENE), that encodes the event network with a multi-view graph encoder while preserving the graph topology and node semantics. The graph encoder is trained by minimizing both structural and semantic losses. We develop a new series of structured probing tasks, and show that our approach effectively outperforms baseline models on node typing, argument role classification, and event coreference resolution.","PeriodicalId":332938,"journal":{"name":"Proceedings of the Fifteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-15)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"GENE: Global Event Network Embedding\",\"authors\":\"Qi Zeng, Manling Li, T. Lai, Heng Ji, Mohit Bansal, Hanghang Tong\",\"doi\":\"10.18653/V1/11.TEXTGRAPHS-1.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current methods for event representation ignore related events in a corpus-level global context. For a deep and comprehensive understanding of complex events, we introduce a new task, Event Network Embedding, which aims to represent events by capturing the connections among events. We propose a novel framework, Global Event Network Embedding (GENE), that encodes the event network with a multi-view graph encoder while preserving the graph topology and node semantics. The graph encoder is trained by minimizing both structural and semantic losses. We develop a new series of structured probing tasks, and show that our approach effectively outperforms baseline models on node typing, argument role classification, and event coreference resolution.\",\"PeriodicalId\":332938,\"journal\":{\"name\":\"Proceedings of the Fifteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-15)\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Fifteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-15)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/V1/11.TEXTGRAPHS-1.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fifteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-15)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/V1/11.TEXTGRAPHS-1.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

当前用于事件表示的方法忽略语料库级全局上下文中的相关事件。为了深入和全面地理解复杂事件,我们引入了一个新的任务,事件网络嵌入,旨在通过捕获事件之间的联系来表示事件。我们提出了一个新的框架,全局事件网络嵌入(GENE),该框架使用多视图图编码器对事件网络进行编码,同时保留图的拓扑结构和节点语义。通过最小化结构和语义损失来训练图编码器。我们开发了一系列新的结构化探测任务,并表明我们的方法在节点类型、参数角色分类和事件共引用解析方面有效地优于基线模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GENE: Global Event Network Embedding
Current methods for event representation ignore related events in a corpus-level global context. For a deep and comprehensive understanding of complex events, we introduce a new task, Event Network Embedding, which aims to represent events by capturing the connections among events. We propose a novel framework, Global Event Network Embedding (GENE), that encodes the event network with a multi-view graph encoder while preserving the graph topology and node semantics. The graph encoder is trained by minimizing both structural and semantic losses. We develop a new series of structured probing tasks, and show that our approach effectively outperforms baseline models on node typing, argument role classification, and event coreference resolution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信