{"title":"面向速度的动态控制-显示增益与接地力反馈装置的动觉交互","authors":"Zhenxing Li, J. Kangas, R. Raisamo","doi":"10.3390/mti7020012","DOIUrl":null,"url":null,"abstract":"Kinesthetic interaction is an important interaction method for virtual reality. Current kinesthetic interaction using a grounded force-feedback device, however, is still considered difficult and time-consuming because of the interaction difficulty in a three-dimensional space. Velocity-oriented dynamic control–display (CD) gain has been used to improve user task performance with pointing devices, such as the mouse. In this study, we extended the application of this technique to kinesthetic interaction and examined its effects on interaction speed, positioning accuracy and touch perception. The results showed that using this technique could improve interaction speed without affecting positioning accuracy in kinesthetic interaction. Velocity-oriented dynamic CD gain could negatively affect touch perception in softness while using large gains. However, it is promising and particularly suitable for kinesthetic tasks that do not require high accuracy in touch perception.","PeriodicalId":408374,"journal":{"name":"Multimodal Technol. Interact.","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Velocity-Oriented Dynamic Control-Display Gain for Kinesthetic Interaction with a Grounded Force-Feedback Device\",\"authors\":\"Zhenxing Li, J. Kangas, R. Raisamo\",\"doi\":\"10.3390/mti7020012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Kinesthetic interaction is an important interaction method for virtual reality. Current kinesthetic interaction using a grounded force-feedback device, however, is still considered difficult and time-consuming because of the interaction difficulty in a three-dimensional space. Velocity-oriented dynamic control–display (CD) gain has been used to improve user task performance with pointing devices, such as the mouse. In this study, we extended the application of this technique to kinesthetic interaction and examined its effects on interaction speed, positioning accuracy and touch perception. The results showed that using this technique could improve interaction speed without affecting positioning accuracy in kinesthetic interaction. Velocity-oriented dynamic CD gain could negatively affect touch perception in softness while using large gains. However, it is promising and particularly suitable for kinesthetic tasks that do not require high accuracy in touch perception.\",\"PeriodicalId\":408374,\"journal\":{\"name\":\"Multimodal Technol. Interact.\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multimodal Technol. Interact.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/mti7020012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multimodal Technol. Interact.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/mti7020012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Velocity-Oriented Dynamic Control-Display Gain for Kinesthetic Interaction with a Grounded Force-Feedback Device
Kinesthetic interaction is an important interaction method for virtual reality. Current kinesthetic interaction using a grounded force-feedback device, however, is still considered difficult and time-consuming because of the interaction difficulty in a three-dimensional space. Velocity-oriented dynamic control–display (CD) gain has been used to improve user task performance with pointing devices, such as the mouse. In this study, we extended the application of this technique to kinesthetic interaction and examined its effects on interaction speed, positioning accuracy and touch perception. The results showed that using this technique could improve interaction speed without affecting positioning accuracy in kinesthetic interaction. Velocity-oriented dynamic CD gain could negatively affect touch perception in softness while using large gains. However, it is promising and particularly suitable for kinesthetic tasks that do not require high accuracy in touch perception.