基于深度确定性策略梯度的机器人机械臂连续控制

M. Shetty, Brunda Vishishta, Shrinidhi Choragi, Karpagavalli Subramanian, Koshy George
{"title":"基于深度确定性策略梯度的机器人机械臂连续控制","authors":"M. Shetty, Brunda Vishishta, Shrinidhi Choragi, Karpagavalli Subramanian, Koshy George","doi":"10.1109/ICC54714.2021.9703155","DOIUrl":null,"url":null,"abstract":"Deep reinforcement learning (DRL) addresses the problems that previously limited the performance of RL algorithms while working with high-dimensional state and action spaces. In this paper, we explore the deep deterministic policy gradient (DDPG) algorithm that operates over continuous action spaces. The application of reference tracking for a two-link robot manipulator (TLRM) in uncertain environments is considered. The TLRM is subjected to uncertainties such as frictional forces and external torque disturbances. In the simulation study, we compare the performance of our RL-based controller with the well-known proportional-derivative (PD) controller. Results indicate a considerable improvement in the mean square error (MSE) and variance accounted for (VAF) metrics when the RL-based controller is utilized.","PeriodicalId":382373,"journal":{"name":"2021 Seventh Indian Control Conference (ICC)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Continuous Control of a Robot Manipulator Using Deep Deterministic Policy Gradient\",\"authors\":\"M. Shetty, Brunda Vishishta, Shrinidhi Choragi, Karpagavalli Subramanian, Koshy George\",\"doi\":\"10.1109/ICC54714.2021.9703155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep reinforcement learning (DRL) addresses the problems that previously limited the performance of RL algorithms while working with high-dimensional state and action spaces. In this paper, we explore the deep deterministic policy gradient (DDPG) algorithm that operates over continuous action spaces. The application of reference tracking for a two-link robot manipulator (TLRM) in uncertain environments is considered. The TLRM is subjected to uncertainties such as frictional forces and external torque disturbances. In the simulation study, we compare the performance of our RL-based controller with the well-known proportional-derivative (PD) controller. Results indicate a considerable improvement in the mean square error (MSE) and variance accounted for (VAF) metrics when the RL-based controller is utilized.\",\"PeriodicalId\":382373,\"journal\":{\"name\":\"2021 Seventh Indian Control Conference (ICC)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Seventh Indian Control Conference (ICC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICC54714.2021.9703155\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Seventh Indian Control Conference (ICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICC54714.2021.9703155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

深度强化学习(DRL)解决了以前在处理高维状态和动作空间时限制RL算法性能的问题。在本文中,我们探讨了在连续动作空间上操作的深度确定性策略梯度(DDPG)算法。研究了参考跟踪在不确定环境下双连杆机械臂中的应用。TLRM受到摩擦力和外部扭矩干扰等不确定性的影响。在仿真研究中,我们将基于rl的控制器与众所周知的比例导数(PD)控制器的性能进行了比较。结果表明,当使用基于rl的控制器时,均方误差(MSE)和方差占比(VAF)指标有相当大的改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Continuous Control of a Robot Manipulator Using Deep Deterministic Policy Gradient
Deep reinforcement learning (DRL) addresses the problems that previously limited the performance of RL algorithms while working with high-dimensional state and action spaces. In this paper, we explore the deep deterministic policy gradient (DDPG) algorithm that operates over continuous action spaces. The application of reference tracking for a two-link robot manipulator (TLRM) in uncertain environments is considered. The TLRM is subjected to uncertainties such as frictional forces and external torque disturbances. In the simulation study, we compare the performance of our RL-based controller with the well-known proportional-derivative (PD) controller. Results indicate a considerable improvement in the mean square error (MSE) and variance accounted for (VAF) metrics when the RL-based controller is utilized.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信