基于子空间选择的多分类器高光谱图像分类系统

Bor-Chen Kuo, Chun-Hsiang Chuang, Cheng-Hsaun Li, Chin-Teng Lin
{"title":"基于子空间选择的多分类器高光谱图像分类系统","authors":"Bor-Chen Kuo, Chun-Hsiang Chuang, Cheng-Hsaun Li, Chin-Teng Lin","doi":"10.1109/WHISPERS.2009.5288977","DOIUrl":null,"url":null,"abstract":"In a typical supervised classification task, the size of training data fundamentally affects the generality of a classifier. Given a finite and fixed size of training data, the classification result may be degraded as the number of features (dimensionality) increase. Many researches have demonstrated that multiple classifier systems (MCS) or so-called ensembles can alleviate small sample size and high dimensionality concern, and obtain more outstanding and robust results than single models. One of the effective approaches for generating an ensemble of diverse base classifiers is the use of different feature subsets such as random subspace method (RSM). The objective of this research is to develop a novel ensemble technique based on cluster algorithms for strengthening RSM. The results of real data experiments show that the proposed method obtains the sound performance especially in the situation of using less number of classifiers.","PeriodicalId":242447,"journal":{"name":"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Subspace selection based multiple classifier systems for hyperspectral image classification\",\"authors\":\"Bor-Chen Kuo, Chun-Hsiang Chuang, Cheng-Hsaun Li, Chin-Teng Lin\",\"doi\":\"10.1109/WHISPERS.2009.5288977\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a typical supervised classification task, the size of training data fundamentally affects the generality of a classifier. Given a finite and fixed size of training data, the classification result may be degraded as the number of features (dimensionality) increase. Many researches have demonstrated that multiple classifier systems (MCS) or so-called ensembles can alleviate small sample size and high dimensionality concern, and obtain more outstanding and robust results than single models. One of the effective approaches for generating an ensemble of diverse base classifiers is the use of different feature subsets such as random subspace method (RSM). The objective of this research is to develop a novel ensemble technique based on cluster algorithms for strengthening RSM. The results of real data experiments show that the proposed method obtains the sound performance especially in the situation of using less number of classifiers.\",\"PeriodicalId\":242447,\"journal\":{\"name\":\"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WHISPERS.2009.5288977\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2009.5288977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在典型的监督分类任务中,训练数据的大小从根本上影响分类器的通用性。给定有限且固定大小的训练数据,分类结果可能会随着特征数量(维数)的增加而下降。许多研究表明,多分类器系统(MCS)或所谓的集成可以减轻小样本和高维数的担忧,并获得比单一模型更突出和鲁棒的结果。生成不同基分类器集合的有效方法之一是使用不同的特征子集,如随机子空间方法(RSM)。本研究的目的是开发一种新的基于聚类算法的集成技术来增强RSM。实际数据实验结果表明,该方法在分类器数量较少的情况下取得了较好的分类效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Subspace selection based multiple classifier systems for hyperspectral image classification
In a typical supervised classification task, the size of training data fundamentally affects the generality of a classifier. Given a finite and fixed size of training data, the classification result may be degraded as the number of features (dimensionality) increase. Many researches have demonstrated that multiple classifier systems (MCS) or so-called ensembles can alleviate small sample size and high dimensionality concern, and obtain more outstanding and robust results than single models. One of the effective approaches for generating an ensemble of diverse base classifiers is the use of different feature subsets such as random subspace method (RSM). The objective of this research is to develop a novel ensemble technique based on cluster algorithms for strengthening RSM. The results of real data experiments show that the proposed method obtains the sound performance especially in the situation of using less number of classifiers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信