{"title":"多尺度图像分割的尺度约束无监督评价方法","authors":"Yuhang Lu, Youchuan Wan, Gang Li","doi":"10.1109/ICIP.2016.7532821","DOIUrl":null,"url":null,"abstract":"Unsupervised evaluation of segmentation quality is a crucial step in image segmentation applications. Previous unsupervised evaluation methods usually lacked the adaptability to multi-scale segmentation. A scale-constrained evaluation method that evaluates segmentation quality according to the specified target scale is proposed in this paper. First, regional saliency and merging cost are employed to describe intra-region homogeneity and inter-region heterogeneity, respectively. Subsequently, both of them are standardized into equivalent spectral distances of a predefined region. Finally, by analyzing the relationship between image characteristics and segmentation quality, we establish the evaluation model. Experimental results show that the proposed method outperforms four commonly used unsupervised methods in multi-scale evaluation tasks.","PeriodicalId":147245,"journal":{"name":"International Conference on Information Photonics","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Scale-constrained unsupervised evaluation method for multi-scale image segmentation\",\"authors\":\"Yuhang Lu, Youchuan Wan, Gang Li\",\"doi\":\"10.1109/ICIP.2016.7532821\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unsupervised evaluation of segmentation quality is a crucial step in image segmentation applications. Previous unsupervised evaluation methods usually lacked the adaptability to multi-scale segmentation. A scale-constrained evaluation method that evaluates segmentation quality according to the specified target scale is proposed in this paper. First, regional saliency and merging cost are employed to describe intra-region homogeneity and inter-region heterogeneity, respectively. Subsequently, both of them are standardized into equivalent spectral distances of a predefined region. Finally, by analyzing the relationship between image characteristics and segmentation quality, we establish the evaluation model. Experimental results show that the proposed method outperforms four commonly used unsupervised methods in multi-scale evaluation tasks.\",\"PeriodicalId\":147245,\"journal\":{\"name\":\"International Conference on Information Photonics\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Information Photonics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2016.7532821\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Information Photonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2016.7532821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Scale-constrained unsupervised evaluation method for multi-scale image segmentation
Unsupervised evaluation of segmentation quality is a crucial step in image segmentation applications. Previous unsupervised evaluation methods usually lacked the adaptability to multi-scale segmentation. A scale-constrained evaluation method that evaluates segmentation quality according to the specified target scale is proposed in this paper. First, regional saliency and merging cost are employed to describe intra-region homogeneity and inter-region heterogeneity, respectively. Subsequently, both of them are standardized into equivalent spectral distances of a predefined region. Finally, by analyzing the relationship between image characteristics and segmentation quality, we establish the evaluation model. Experimental results show that the proposed method outperforms four commonly used unsupervised methods in multi-scale evaluation tasks.