基于用户和网络的社交媒体Hawkes过程纵向建模

P. K. Srijith, M. Lukasik, Kalina Bontcheva, Trevor Cohn
{"title":"基于用户和网络的社交媒体Hawkes过程纵向建模","authors":"P. K. Srijith, M. Lukasik, Kalina Bontcheva, Trevor Cohn","doi":"10.1145/3110025.3110107","DOIUrl":null,"url":null,"abstract":"Online social media provide a platform for rapid network propagation of information at an unprecedented scale. In this paper, we study the evolution of information cascades in Twitter using a point process model of user activity. Twitter is rich with heterogenous information on users and network structure. We develop several Hawkes process models considering various properties of Twitter including conversational structure, users' connections and general features of users including the textual information, and show how they are helpful in modeling the social network activity. Evaluation on Twitter data sets shows that incorporating richer properties improves the performance in predicting future activity of users and memes.","PeriodicalId":399660,"journal":{"name":"Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2017","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Longitudinal Modeling of Social Media with Hawkes Process Based on Users and Networks\",\"authors\":\"P. K. Srijith, M. Lukasik, Kalina Bontcheva, Trevor Cohn\",\"doi\":\"10.1145/3110025.3110107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Online social media provide a platform for rapid network propagation of information at an unprecedented scale. In this paper, we study the evolution of information cascades in Twitter using a point process model of user activity. Twitter is rich with heterogenous information on users and network structure. We develop several Hawkes process models considering various properties of Twitter including conversational structure, users' connections and general features of users including the textual information, and show how they are helpful in modeling the social network activity. Evaluation on Twitter data sets shows that incorporating richer properties improves the performance in predicting future activity of users and memes.\",\"PeriodicalId\":399660,\"journal\":{\"name\":\"Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2017\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2017\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3110025.3110107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2017","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3110025.3110107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

在线社交媒体为信息的快速网络传播提供了前所未有的平台。本文利用用户活动的点过程模型研究了Twitter中信息级联的演化。Twitter在用户和网络结构方面有着丰富的异构信息。我们开发了几个Hawkes过程模型,考虑了Twitter的各种属性,包括会话结构、用户连接和用户的一般特征,包括文本信息,并展示了它们如何有助于建模社交网络活动。对Twitter数据集的评估表明,结合更丰富的属性可以提高预测用户和模因未来活动的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Longitudinal Modeling of Social Media with Hawkes Process Based on Users and Networks
Online social media provide a platform for rapid network propagation of information at an unprecedented scale. In this paper, we study the evolution of information cascades in Twitter using a point process model of user activity. Twitter is rich with heterogenous information on users and network structure. We develop several Hawkes process models considering various properties of Twitter including conversational structure, users' connections and general features of users including the textual information, and show how they are helpful in modeling the social network activity. Evaluation on Twitter data sets shows that incorporating richer properties improves the performance in predicting future activity of users and memes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信