视频动作识别的时空协同卷积

Xu Li, Liqiang Wen, Jinjun Wang, Ming Zeng
{"title":"视频动作识别的时空协同卷积","authors":"Xu Li, Liqiang Wen, Jinjun Wang, Ming Zeng","doi":"10.1109/ICAICA50127.2020.9182498","DOIUrl":null,"url":null,"abstract":"Although video action recognition has achieved great progress in recent years, it is still a challenging task due to the huge computational complexity. Designing a lightweight network is a feasible solution, but it may reduce the spatio-temporal information modeling capability. In this paper, we propose a novel novel spatio-temporal collaborative convolution (denote as “STC-Conv”), which can efficiently encode spatio-temporal information. STC-Conv collaboratively learn spatial and temporal feature in one convolution filter kernel. In short, temporal convolution and spatial convolution are integrated in the one STC convolution kernel, which can effectively reduce the model complexity and improve the computational efficiency. STC-Conv is a universal convolution, which can be applied to the existing 2D CNNs, such as ResNet, DenseNet. The experimental results on the temporal-related dataset Something Something V1 prove the superiority of our method. Noticeably, STC-Conv enjoys more excellent performance than 3D CNNs at even lower computation cost than standard 2D CNNs.","PeriodicalId":113564,"journal":{"name":"2020 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA)","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatio-temporal Collaborative Convolution for Video Action Recognition\",\"authors\":\"Xu Li, Liqiang Wen, Jinjun Wang, Ming Zeng\",\"doi\":\"10.1109/ICAICA50127.2020.9182498\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although video action recognition has achieved great progress in recent years, it is still a challenging task due to the huge computational complexity. Designing a lightweight network is a feasible solution, but it may reduce the spatio-temporal information modeling capability. In this paper, we propose a novel novel spatio-temporal collaborative convolution (denote as “STC-Conv”), which can efficiently encode spatio-temporal information. STC-Conv collaboratively learn spatial and temporal feature in one convolution filter kernel. In short, temporal convolution and spatial convolution are integrated in the one STC convolution kernel, which can effectively reduce the model complexity and improve the computational efficiency. STC-Conv is a universal convolution, which can be applied to the existing 2D CNNs, such as ResNet, DenseNet. The experimental results on the temporal-related dataset Something Something V1 prove the superiority of our method. Noticeably, STC-Conv enjoys more excellent performance than 3D CNNs at even lower computation cost than standard 2D CNNs.\",\"PeriodicalId\":113564,\"journal\":{\"name\":\"2020 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA)\",\"volume\":\"94 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAICA50127.2020.9182498\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAICA50127.2020.9182498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

尽管近年来视频动作识别取得了很大的进展,但由于其巨大的计算复杂度,仍然是一项具有挑战性的任务。设计轻量级网络是一种可行的解决方案,但它可能会降低时空信息建模的能力。在本文中,我们提出了一种新颖的时空协同卷积(STC-Conv),它可以有效地编码时空信息。STC-Conv在一个卷积滤波核中协同学习时空特征。简而言之,将时间卷积和空间卷积集成在一个STC卷积核中,可以有效降低模型复杂度,提高计算效率。STC-Conv是一种通用卷积,可以应用于现有的2D cnn,如ResNet、DenseNet。在时间相关数据集Something Something V1上的实验结果证明了该方法的优越性。值得注意的是,STC-Conv具有比3D cnn更优异的性能,甚至比标准2D cnn的计算成本更低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatio-temporal Collaborative Convolution for Video Action Recognition
Although video action recognition has achieved great progress in recent years, it is still a challenging task due to the huge computational complexity. Designing a lightweight network is a feasible solution, but it may reduce the spatio-temporal information modeling capability. In this paper, we propose a novel novel spatio-temporal collaborative convolution (denote as “STC-Conv”), which can efficiently encode spatio-temporal information. STC-Conv collaboratively learn spatial and temporal feature in one convolution filter kernel. In short, temporal convolution and spatial convolution are integrated in the one STC convolution kernel, which can effectively reduce the model complexity and improve the computational efficiency. STC-Conv is a universal convolution, which can be applied to the existing 2D CNNs, such as ResNet, DenseNet. The experimental results on the temporal-related dataset Something Something V1 prove the superiority of our method. Noticeably, STC-Conv enjoys more excellent performance than 3D CNNs at even lower computation cost than standard 2D CNNs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信