通过二元复合体对高K -群的外部幂运算

Tom Harris, Bernhard Kock, L. Taelman
{"title":"通过二元复合体对高K -群的外部幂运算","authors":"Tom Harris, Bernhard Kock, L. Taelman","doi":"10.2140/akt.2017.2.409","DOIUrl":null,"url":null,"abstract":"We use Grayson's binary multicomplex presentation of algebraic $K$-theory to give a new construction of exterior power operations on the higher $K$-groups of a (quasi-compact) scheme. We show that these operations satisfy the axioms of a $\\lambda$-ring, including the product and composition laws. To prove the composition law we show that the Grothendieck group of the exact category of integral polynomial functors is the universal $\\lambda$-ring on one generator.","PeriodicalId":309711,"journal":{"name":"arXiv: K-Theory and Homology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Exterior power operations on higher $K$-groups via binary complexes\",\"authors\":\"Tom Harris, Bernhard Kock, L. Taelman\",\"doi\":\"10.2140/akt.2017.2.409\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We use Grayson's binary multicomplex presentation of algebraic $K$-theory to give a new construction of exterior power operations on the higher $K$-groups of a (quasi-compact) scheme. We show that these operations satisfy the axioms of a $\\\\lambda$-ring, including the product and composition laws. To prove the composition law we show that the Grothendieck group of the exact category of integral polynomial functors is the universal $\\\\lambda$-ring on one generator.\",\"PeriodicalId\":309711,\"journal\":{\"name\":\"arXiv: K-Theory and Homology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/akt.2017.2.409\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/akt.2017.2.409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

利用代数$K$-理论的Grayson二元多重复表示,给出了拟紧格式的高$K$-群上的外幂运算的一个新构造。我们证明这些运算满足$\ λ $-环的公理,包括乘积定律和复合定律。为了证明复合律,我们证明了整多项式函子的精确范畴的Grothendieck群是一个发生器上的泛环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exterior power operations on higher $K$-groups via binary complexes
We use Grayson's binary multicomplex presentation of algebraic $K$-theory to give a new construction of exterior power operations on the higher $K$-groups of a (quasi-compact) scheme. We show that these operations satisfy the axioms of a $\lambda$-ring, including the product and composition laws. To prove the composition law we show that the Grothendieck group of the exact category of integral polynomial functors is the universal $\lambda$-ring on one generator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信