{"title":"自举自回归加噪声过程","authors":"C. Debes, A. Zoubir","doi":"10.1109/CAMSAP.2007.4497963","DOIUrl":null,"url":null,"abstract":"We address the problem of estimating confidence intervals for the parameters of an autoregressive plus noise process, in particular when the additive noise is non-Gaussian. We demonstrate how the independent data bootstrap can be used to solve this problem. We motivate an autoregressive moving-average modeling approach and apply the recursive maximum algorithm for parameter estimation. Computer simulations are carried out to show the performance of the proposed method. Furthermore a real data example from automotive engineering has been considered for assessing our approach. Using a pressure signal from inside the combustion chamber, we show how confidence intervals for the autoregressive parameters can be calculated.","PeriodicalId":220687,"journal":{"name":"2007 2nd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Bootstrapping Autoregressive Plus Noise Processes\",\"authors\":\"C. Debes, A. Zoubir\",\"doi\":\"10.1109/CAMSAP.2007.4497963\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We address the problem of estimating confidence intervals for the parameters of an autoregressive plus noise process, in particular when the additive noise is non-Gaussian. We demonstrate how the independent data bootstrap can be used to solve this problem. We motivate an autoregressive moving-average modeling approach and apply the recursive maximum algorithm for parameter estimation. Computer simulations are carried out to show the performance of the proposed method. Furthermore a real data example from automotive engineering has been considered for assessing our approach. Using a pressure signal from inside the combustion chamber, we show how confidence intervals for the autoregressive parameters can be calculated.\",\"PeriodicalId\":220687,\"journal\":{\"name\":\"2007 2nd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 2nd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAMSAP.2007.4497963\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 2nd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMSAP.2007.4497963","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We address the problem of estimating confidence intervals for the parameters of an autoregressive plus noise process, in particular when the additive noise is non-Gaussian. We demonstrate how the independent data bootstrap can be used to solve this problem. We motivate an autoregressive moving-average modeling approach and apply the recursive maximum algorithm for parameter estimation. Computer simulations are carried out to show the performance of the proposed method. Furthermore a real data example from automotive engineering has been considered for assessing our approach. Using a pressure signal from inside the combustion chamber, we show how confidence intervals for the autoregressive parameters can be calculated.