基于qos的移动视频流服务器选择

Daniel Kanba Tapang, Siqi Huang, Xueqing Huang
{"title":"基于qos的移动视频流服务器选择","authors":"Daniel Kanba Tapang, Siqi Huang, Xueqing Huang","doi":"10.1109/SEC50012.2020.00066","DOIUrl":null,"url":null,"abstract":"Mobile devices make up the bulk of clients that stream video content over the internet. Improving one of the most popular services, i.e., mobile video streaming, has the potential to make the most market impact. Video streaming giants like YouTube, Netflix, Hulu, and Amazon video aim to provide the best quality service and expand market share. The problem of selecting the best server is critical for ensuring the qualified experience for video streaming on a mobile device. Traditional server selection strategies use proximity as a server selection rule. Improved strategies select servers by considering more factors that also impact the quality of experience (QoE). Currently, reinforcement learning is being used to maximize QoE when selecting servers. This paper seeks to further develop an RL agent that performs better on mobile devices. The result is an RL agent that quickly learns to select servers that offer the best QoE.","PeriodicalId":375577,"journal":{"name":"2020 IEEE/ACM Symposium on Edge Computing (SEC)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"QoE-Based Server Selection for Mobile Video Streaming\",\"authors\":\"Daniel Kanba Tapang, Siqi Huang, Xueqing Huang\",\"doi\":\"10.1109/SEC50012.2020.00066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mobile devices make up the bulk of clients that stream video content over the internet. Improving one of the most popular services, i.e., mobile video streaming, has the potential to make the most market impact. Video streaming giants like YouTube, Netflix, Hulu, and Amazon video aim to provide the best quality service and expand market share. The problem of selecting the best server is critical for ensuring the qualified experience for video streaming on a mobile device. Traditional server selection strategies use proximity as a server selection rule. Improved strategies select servers by considering more factors that also impact the quality of experience (QoE). Currently, reinforcement learning is being used to maximize QoE when selecting servers. This paper seeks to further develop an RL agent that performs better on mobile devices. The result is an RL agent that quickly learns to select servers that offer the best QoE.\",\"PeriodicalId\":375577,\"journal\":{\"name\":\"2020 IEEE/ACM Symposium on Edge Computing (SEC)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE/ACM Symposium on Edge Computing (SEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SEC50012.2020.00066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE/ACM Symposium on Edge Computing (SEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEC50012.2020.00066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

移动设备构成了通过互联网传输视频内容的大部分客户端。改进最受欢迎的服务之一,即移动视频流,有可能产生最大的市场影响。YouTube、Netflix、Hulu和亚马逊视频等视频流媒体巨头的目标是提供最优质的服务,扩大市场份额。选择最佳服务器的问题对于确保移动设备上视频流的合格体验至关重要。传统的服务器选择策略使用邻近性作为服务器选择规则。改进的策略通过考虑更多影响体验质量(QoE)的因素来选择服务器。目前,在选择服务器时,强化学习被用于最大化QoE。本文旨在进一步开发一个在移动设备上表现更好的RL代理。结果是RL代理可以快速学习选择提供最佳QoE的服务器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
QoE-Based Server Selection for Mobile Video Streaming
Mobile devices make up the bulk of clients that stream video content over the internet. Improving one of the most popular services, i.e., mobile video streaming, has the potential to make the most market impact. Video streaming giants like YouTube, Netflix, Hulu, and Amazon video aim to provide the best quality service and expand market share. The problem of selecting the best server is critical for ensuring the qualified experience for video streaming on a mobile device. Traditional server selection strategies use proximity as a server selection rule. Improved strategies select servers by considering more factors that also impact the quality of experience (QoE). Currently, reinforcement learning is being used to maximize QoE when selecting servers. This paper seeks to further develop an RL agent that performs better on mobile devices. The result is an RL agent that quickly learns to select servers that offer the best QoE.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信