自然图像的色度通道中的掩蔽。数据、分析和预测

V. Kitanovski, Marius Pedersen
{"title":"自然图像的色度通道中的掩蔽。数据、分析和预测","authors":"V. Kitanovski, Marius Pedersen","doi":"10.1109/ISPA.2017.8073583","DOIUrl":null,"url":null,"abstract":"This paper addresses the visual masking that occurs in the chrominance channels of natural images. We present results from a psychophysical experiment designed to obtain local thresholds of just noticeable log-Gabor distortion in the Cr and Cb channels of natural images. We analyzed the data and investigated the correlation between several low-level image features and the collected thresholds. As expected, features like variance, entropy, or edge density were correlated relatively high with the thresholds. We evaluated the performance of linear and non-linear regression (using neural networks and support vector machines) for thresholds prediction from multiple global image features; we also fitted a modified Watson-Solomon's computational model (based on log-Gabor features) for thresholds prediction. The evaluation showed that neural networks and support vector machines are most suitable for thresholds prediction. The computational model performed reasonably well, with further prospects of its improvement.","PeriodicalId":117602,"journal":{"name":"Proceedings of the 10th International Symposium on Image and Signal Processing and Analysis","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Masking in chrominance channels of natural images — Data, analysis, and prediction\",\"authors\":\"V. Kitanovski, Marius Pedersen\",\"doi\":\"10.1109/ISPA.2017.8073583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the visual masking that occurs in the chrominance channels of natural images. We present results from a psychophysical experiment designed to obtain local thresholds of just noticeable log-Gabor distortion in the Cr and Cb channels of natural images. We analyzed the data and investigated the correlation between several low-level image features and the collected thresholds. As expected, features like variance, entropy, or edge density were correlated relatively high with the thresholds. We evaluated the performance of linear and non-linear regression (using neural networks and support vector machines) for thresholds prediction from multiple global image features; we also fitted a modified Watson-Solomon's computational model (based on log-Gabor features) for thresholds prediction. The evaluation showed that neural networks and support vector machines are most suitable for thresholds prediction. The computational model performed reasonably well, with further prospects of its improvement.\",\"PeriodicalId\":117602,\"journal\":{\"name\":\"Proceedings of the 10th International Symposium on Image and Signal Processing and Analysis\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 10th International Symposium on Image and Signal Processing and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPA.2017.8073583\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th International Symposium on Image and Signal Processing and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPA.2017.8073583","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文讨论了在自然图像的色度通道中发生的视觉掩蔽。我们展示了一项心理物理实验的结果,该实验旨在获得自然图像的Cr和Cb通道中仅显着的log-Gabor失真的局部阈值。我们分析了数据,并研究了几个低水平图像特征与收集的阈值之间的相关性。正如预期的那样,方差、熵或边缘密度等特征与阈值的相关性相对较高。我们评估了线性和非线性回归(使用神经网络和支持向量机)对多个全局图像特征的阈值预测的性能;我们还拟合了一个改进的Watson-Solomon计算模型(基于log-Gabor特征)用于阈值预测。结果表明,神经网络和支持向量机最适合用于阈值预测。该计算模型表现相当好,并有进一步改进的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Masking in chrominance channels of natural images — Data, analysis, and prediction
This paper addresses the visual masking that occurs in the chrominance channels of natural images. We present results from a psychophysical experiment designed to obtain local thresholds of just noticeable log-Gabor distortion in the Cr and Cb channels of natural images. We analyzed the data and investigated the correlation between several low-level image features and the collected thresholds. As expected, features like variance, entropy, or edge density were correlated relatively high with the thresholds. We evaluated the performance of linear and non-linear regression (using neural networks and support vector machines) for thresholds prediction from multiple global image features; we also fitted a modified Watson-Solomon's computational model (based on log-Gabor features) for thresholds prediction. The evaluation showed that neural networks and support vector machines are most suitable for thresholds prediction. The computational model performed reasonably well, with further prospects of its improvement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信