专门用于检测音乐录音中的唤醒和价的音频功能

Jacek Grekow
{"title":"专门用于检测音乐录音中的唤醒和价的音频功能","authors":"Jacek Grekow","doi":"10.1109/INISTA.2017.8001129","DOIUrl":null,"url":null,"abstract":"The aim of this paper was to discover what combination of audio features gives the best performance with music emotion detection. In our approach, emotion recognition was treated as a regression problem and a two-dimensional valence-arousal model was used to measure emotions in music. We used features extracted by Essentia and Marsyas, tools for audio analysis and audio-based music information retrieval. We examined the influence of different feature sets - low-level, rhythm, tonal, and their combination - on arousal and valence prediction. The use of a combination of different types of features significantly improves the results compared with using just one group of features. We found and presented features particularly dedicated to the detection of arousal and valence separately, as well as features useful in both cases.","PeriodicalId":314687,"journal":{"name":"2017 IEEE International Conference on INnovations in Intelligent SysTems and Applications (INISTA)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Audio features dedicated to the detection of arousal and valence in music recordings\",\"authors\":\"Jacek Grekow\",\"doi\":\"10.1109/INISTA.2017.8001129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this paper was to discover what combination of audio features gives the best performance with music emotion detection. In our approach, emotion recognition was treated as a regression problem and a two-dimensional valence-arousal model was used to measure emotions in music. We used features extracted by Essentia and Marsyas, tools for audio analysis and audio-based music information retrieval. We examined the influence of different feature sets - low-level, rhythm, tonal, and their combination - on arousal and valence prediction. The use of a combination of different types of features significantly improves the results compared with using just one group of features. We found and presented features particularly dedicated to the detection of arousal and valence separately, as well as features useful in both cases.\",\"PeriodicalId\":314687,\"journal\":{\"name\":\"2017 IEEE International Conference on INnovations in Intelligent SysTems and Applications (INISTA)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on INnovations in Intelligent SysTems and Applications (INISTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INISTA.2017.8001129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on INnovations in Intelligent SysTems and Applications (INISTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INISTA.2017.8001129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

本文的目的是发现什么样的音频特征组合可以提供最佳的音乐情感检测性能。在我们的方法中,情绪识别被视为一个回归问题,并使用二维价-觉醒模型来测量音乐中的情绪。我们使用了Essentia和Marsyas提取的特征,音频分析和基于音频的音乐信息检索工具。我们研究了不同的特征集——低水平、节奏、音调及其组合——对唤起和效价预测的影响。与仅使用一组特征相比,使用不同类型特征的组合显著改善了结果。我们发现并提出了专门用于分别检测唤起和效价的特征,以及在这两种情况下都有用的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Audio features dedicated to the detection of arousal and valence in music recordings
The aim of this paper was to discover what combination of audio features gives the best performance with music emotion detection. In our approach, emotion recognition was treated as a regression problem and a two-dimensional valence-arousal model was used to measure emotions in music. We used features extracted by Essentia and Marsyas, tools for audio analysis and audio-based music information retrieval. We examined the influence of different feature sets - low-level, rhythm, tonal, and their combination - on arousal and valence prediction. The use of a combination of different types of features significantly improves the results compared with using just one group of features. We found and presented features particularly dedicated to the detection of arousal and valence separately, as well as features useful in both cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信