REVEAL 2019:与现实世界闭合回路:用于推荐的强化和鲁棒估计器

T. Joachims, Maria Dimakopoulou, Adith Swaminathan, Yves Raimond, Olivier Koch, Flavian Vasile
{"title":"REVEAL 2019:与现实世界闭合回路:用于推荐的强化和鲁棒估计器","authors":"T. Joachims, Maria Dimakopoulou, Adith Swaminathan, Yves Raimond, Olivier Koch, Flavian Vasile","doi":"10.1145/3298689.3346975","DOIUrl":null,"url":null,"abstract":"The REVEAL workshop1 focuses on framing the recommendation problem as a one of making personalized interventions. Moreover, these interventions sometimes depend on each other, where a stream of interactions occurs between the user and the system, and where each decision to recommend something will have an impact on future steps and long-term rewards. This framing creates a number of challenges we will discuss at the workshop. How can recommender systems be evaluated offline in such a context? How can we learn recommendation policies that are aware of these delayed consequences and outcomes?","PeriodicalId":215384,"journal":{"name":"Proceedings of the 13th ACM Conference on Recommender Systems","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"REVEAL 2019: closing the loop with the real world: reinforcement and robust estimators for recommendation\",\"authors\":\"T. Joachims, Maria Dimakopoulou, Adith Swaminathan, Yves Raimond, Olivier Koch, Flavian Vasile\",\"doi\":\"10.1145/3298689.3346975\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The REVEAL workshop1 focuses on framing the recommendation problem as a one of making personalized interventions. Moreover, these interventions sometimes depend on each other, where a stream of interactions occurs between the user and the system, and where each decision to recommend something will have an impact on future steps and long-term rewards. This framing creates a number of challenges we will discuss at the workshop. How can recommender systems be evaluated offline in such a context? How can we learn recommendation policies that are aware of these delayed consequences and outcomes?\",\"PeriodicalId\":215384,\"journal\":{\"name\":\"Proceedings of the 13th ACM Conference on Recommender Systems\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 13th ACM Conference on Recommender Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3298689.3346975\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th ACM Conference on Recommender Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3298689.3346975","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

REVEAL研讨会1的重点是将推荐问题构建为一个个性化干预的问题。此外,这些干预有时是相互依赖的,在用户和系统之间会发生一系列的交互,而每一个推荐的决定都会对未来的步骤和长期回报产生影响。这种框架带来了许多挑战,我们将在研讨会上讨论。在这种情况下,如何离线评估推荐系统?我们如何学习那些意识到这些延迟后果和结果的推荐策略?
本文章由计算机程序翻译,如有差异,请以英文原文为准。
REVEAL 2019: closing the loop with the real world: reinforcement and robust estimators for recommendation
The REVEAL workshop1 focuses on framing the recommendation problem as a one of making personalized interventions. Moreover, these interventions sometimes depend on each other, where a stream of interactions occurs between the user and the system, and where each decision to recommend something will have an impact on future steps and long-term rewards. This framing creates a number of challenges we will discuss at the workshop. How can recommender systems be evaluated offline in such a context? How can we learn recommendation policies that are aware of these delayed consequences and outcomes?
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信