基于两帧点对应的运动结构优化计算

M. Spetsakis, Y. Aloimonos
{"title":"基于两帧点对应的运动结构优化计算","authors":"M. Spetsakis, Y. Aloimonos","doi":"10.1109/CCV.1988.590022","DOIUrl":null,"url":null,"abstract":"One of the problems associated with any approach to the structure from motion problem using point correspondence, i.e. recovering the structure of a moving object from its successive images, is the use of least squares on dependent variables. We formulate the problem as a quadratic minimization problem with a non-linear constraint. Then we derive the condition for i,he solution to be optimal under the assumption of Gaussian noise in the input, in the Maximum Likelihood Principle sense. This constraint minimization reduces to the solution of a nonlinear system which in the presence of modest noise is easy to approximate. We present two efficient ways to approximate it and we discuss some inherent limitations of the structure from motion problem when two frames are used that should be taken into account in robotics applications that involve dynamic imagery. In addition, our formulation introduces a framework in which previous works on the subject become special cases.","PeriodicalId":229545,"journal":{"name":"[1988 Proceedings] Second International Conference on Computer Vision","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"59","resultStr":"{\"title\":\"Optimal Computing Of Structure From Motion Using Point Correspondences In Two Frames\",\"authors\":\"M. Spetsakis, Y. Aloimonos\",\"doi\":\"10.1109/CCV.1988.590022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the problems associated with any approach to the structure from motion problem using point correspondence, i.e. recovering the structure of a moving object from its successive images, is the use of least squares on dependent variables. We formulate the problem as a quadratic minimization problem with a non-linear constraint. Then we derive the condition for i,he solution to be optimal under the assumption of Gaussian noise in the input, in the Maximum Likelihood Principle sense. This constraint minimization reduces to the solution of a nonlinear system which in the presence of modest noise is easy to approximate. We present two efficient ways to approximate it and we discuss some inherent limitations of the structure from motion problem when two frames are used that should be taken into account in robotics applications that involve dynamic imagery. In addition, our formulation introduces a framework in which previous works on the subject become special cases.\",\"PeriodicalId\":229545,\"journal\":{\"name\":\"[1988 Proceedings] Second International Conference on Computer Vision\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"59\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1988 Proceedings] Second International Conference on Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCV.1988.590022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1988 Proceedings] Second International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCV.1988.590022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 59

摘要

使用点对应(即从连续图像中恢复运动物体的结构)来解决运动结构问题的任何方法所涉及的问题之一是在因变量上使用最小二乘。我们把这个问题表述为一个非线性约束的二次最小化问题。然后,在极大似然原理的意义上,我们推导了在输入中存在高斯噪声的假设下,解i是最优的条件。这种约束最小化方法可以简化为非线性系统的解,该非线性系统在存在适度噪声的情况下易于近似。我们提出了两种有效的近似方法,并讨论了在涉及动态图像的机器人应用中,当使用两帧时,运动问题中结构的一些固有局限性。此外,我们的公式引入了一个框架,在这个框架中,以前关于这个主题的工作成为特殊情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Computing Of Structure From Motion Using Point Correspondences In Two Frames
One of the problems associated with any approach to the structure from motion problem using point correspondence, i.e. recovering the structure of a moving object from its successive images, is the use of least squares on dependent variables. We formulate the problem as a quadratic minimization problem with a non-linear constraint. Then we derive the condition for i,he solution to be optimal under the assumption of Gaussian noise in the input, in the Maximum Likelihood Principle sense. This constraint minimization reduces to the solution of a nonlinear system which in the presence of modest noise is easy to approximate. We present two efficient ways to approximate it and we discuss some inherent limitations of the structure from motion problem when two frames are used that should be taken into account in robotics applications that involve dynamic imagery. In addition, our formulation introduces a framework in which previous works on the subject become special cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信