{"title":"利用脑电图信号测量睡眠质量的机器学习方法","authors":"M. Ravan, Senior Member","doi":"10.1109/SPMB47826.2019.9037833","DOIUrl":null,"url":null,"abstract":"Sleep quality has a vital effect on good health and well-being throughout a life. Getting enough sleep at the right times can help protect mental health, physical health, quality of life, and safety. In this study, an electroencephalography (EEG)-based machine-learning approach is proposed to measure sleep quality. The advantages of our approach over standard Polysomnography (PSG) method are: 1) it measures sleep quality by recognizing three sleep categories rather than five sleep stages, thus higher accuracy can be expected; 2) three sleep categories are recognized by analyzing EEG signals only using two EEG electrodes, so the user experience is improved because he/she is attached with fewer sensors during sleep. Using quantitative features obtained from EEG signals, we developed a new automatic sleep-staging framework that consists of a multi-class support vector machine (SVM) classification based on a decision tree approach. We used polysomnographic data from PhysioBank database to train and evaluate the performance of the framework, where the sleep stages have been visually annotated. The results demonstrated that the proposed approach achieves high classification performance, which helps to measure sleep quality accurately.","PeriodicalId":143197,"journal":{"name":"2019 IEEE Signal Processing in Medicine and Biology Symposium (SPMB)","volume":"471 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Machine Learning Approach to Measure Sleep Quality using EEG Signals\",\"authors\":\"M. Ravan, Senior Member\",\"doi\":\"10.1109/SPMB47826.2019.9037833\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sleep quality has a vital effect on good health and well-being throughout a life. Getting enough sleep at the right times can help protect mental health, physical health, quality of life, and safety. In this study, an electroencephalography (EEG)-based machine-learning approach is proposed to measure sleep quality. The advantages of our approach over standard Polysomnography (PSG) method are: 1) it measures sleep quality by recognizing three sleep categories rather than five sleep stages, thus higher accuracy can be expected; 2) three sleep categories are recognized by analyzing EEG signals only using two EEG electrodes, so the user experience is improved because he/she is attached with fewer sensors during sleep. Using quantitative features obtained from EEG signals, we developed a new automatic sleep-staging framework that consists of a multi-class support vector machine (SVM) classification based on a decision tree approach. We used polysomnographic data from PhysioBank database to train and evaluate the performance of the framework, where the sleep stages have been visually annotated. The results demonstrated that the proposed approach achieves high classification performance, which helps to measure sleep quality accurately.\",\"PeriodicalId\":143197,\"journal\":{\"name\":\"2019 IEEE Signal Processing in Medicine and Biology Symposium (SPMB)\",\"volume\":\"471 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Signal Processing in Medicine and Biology Symposium (SPMB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPMB47826.2019.9037833\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Signal Processing in Medicine and Biology Symposium (SPMB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPMB47826.2019.9037833","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Machine Learning Approach to Measure Sleep Quality using EEG Signals
Sleep quality has a vital effect on good health and well-being throughout a life. Getting enough sleep at the right times can help protect mental health, physical health, quality of life, and safety. In this study, an electroencephalography (EEG)-based machine-learning approach is proposed to measure sleep quality. The advantages of our approach over standard Polysomnography (PSG) method are: 1) it measures sleep quality by recognizing three sleep categories rather than five sleep stages, thus higher accuracy can be expected; 2) three sleep categories are recognized by analyzing EEG signals only using two EEG electrodes, so the user experience is improved because he/she is attached with fewer sensors during sleep. Using quantitative features obtained from EEG signals, we developed a new automatic sleep-staging framework that consists of a multi-class support vector machine (SVM) classification based on a decision tree approach. We used polysomnographic data from PhysioBank database to train and evaluate the performance of the framework, where the sleep stages have been visually annotated. The results demonstrated that the proposed approach achieves high classification performance, which helps to measure sleep quality accurately.