利用智能电网技术提高低压农村电网可靠性

Maximilian L. Ellery, M. Ndawula, I. Hernando‐Gil
{"title":"利用智能电网技术提高低压农村电网可靠性","authors":"Maximilian L. Ellery, M. Ndawula, I. Hernando‐Gil","doi":"10.1109/SEST.2019.8849045","DOIUrl":null,"url":null,"abstract":"This paper analyses the effect of new smart grid technologies (SGTs) on the reliability indices typically specified by distribution network operators in low-voltage rural distribution systems. Rural areas generally denoted as “thinly-populated”, are to a large extent neglected in the anticipated transformation of existing networks into the future smart grid. An innovative Monte Carlo simulation technique is refined in this analysis to model the stochastic failure rates of power components over a specific time period, which are then applied to network load flow analysis to assess the quality of supply enhancement of a modelled rural distribution network. The proposed method enables much faster and more refined reliability studies, allowing for larger data sets to capture the inherent uncertainty from the new SGTs. Simulation results providing base case reliability indices, and the addition of SGTs accumulated from models in previous works, provide scenarios used for comparison into SGT-effectiveness.","PeriodicalId":158839,"journal":{"name":"2019 International Conference on Smart Energy Systems and Technologies (SEST)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Reliability Enhancement of LV Rural Networks using Smart Grid Technologies\",\"authors\":\"Maximilian L. Ellery, M. Ndawula, I. Hernando‐Gil\",\"doi\":\"10.1109/SEST.2019.8849045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper analyses the effect of new smart grid technologies (SGTs) on the reliability indices typically specified by distribution network operators in low-voltage rural distribution systems. Rural areas generally denoted as “thinly-populated”, are to a large extent neglected in the anticipated transformation of existing networks into the future smart grid. An innovative Monte Carlo simulation technique is refined in this analysis to model the stochastic failure rates of power components over a specific time period, which are then applied to network load flow analysis to assess the quality of supply enhancement of a modelled rural distribution network. The proposed method enables much faster and more refined reliability studies, allowing for larger data sets to capture the inherent uncertainty from the new SGTs. Simulation results providing base case reliability indices, and the addition of SGTs accumulated from models in previous works, provide scenarios used for comparison into SGT-effectiveness.\",\"PeriodicalId\":158839,\"journal\":{\"name\":\"2019 International Conference on Smart Energy Systems and Technologies (SEST)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Smart Energy Systems and Technologies (SEST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SEST.2019.8849045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Smart Energy Systems and Technologies (SEST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEST.2019.8849045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文分析了新型智能电网技术对低压农村配电系统中配电网运营商通常规定的可靠性指标的影响。通常被称为“人口稀少”的农村地区,在现有网络向未来智能电网的预期转型中,在很大程度上被忽视了。在本分析中,改进了一种创新的蒙特卡罗模拟技术,以模拟特定时间段内电力组件的随机故障率,然后将其应用于网络负载流分析,以评估模拟农村配电网的供应增强质量。所提出的方法可以实现更快、更精确的可靠性研究,允许更大的数据集来捕获来自新sgt的固有不确定性。仿真结果提供了基本情况可靠性指标,并添加了以前工作中模型积累的sgt,提供了用于比较sgt有效性的场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reliability Enhancement of LV Rural Networks using Smart Grid Technologies
This paper analyses the effect of new smart grid technologies (SGTs) on the reliability indices typically specified by distribution network operators in low-voltage rural distribution systems. Rural areas generally denoted as “thinly-populated”, are to a large extent neglected in the anticipated transformation of existing networks into the future smart grid. An innovative Monte Carlo simulation technique is refined in this analysis to model the stochastic failure rates of power components over a specific time period, which are then applied to network load flow analysis to assess the quality of supply enhancement of a modelled rural distribution network. The proposed method enables much faster and more refined reliability studies, allowing for larger data sets to capture the inherent uncertainty from the new SGTs. Simulation results providing base case reliability indices, and the addition of SGTs accumulated from models in previous works, provide scenarios used for comparison into SGT-effectiveness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信