基于对立的正弦余弦算法(OSCA)训练前馈神经网络

Divya Bairathi, D. Gopalani
{"title":"基于对立的正弦余弦算法(OSCA)训练前馈神经网络","authors":"Divya Bairathi, D. Gopalani","doi":"10.1109/SITIS.2017.78","DOIUrl":null,"url":null,"abstract":"Neural network is an effective machine learning technique for classification and regression. In recent studies many stochastic population based techniques are applied to train neural networks. In this paper, Opposition-Based Sine Cosine Algorithm (OSCA) is applied for feed-forward neural network (FNN) training. OSCA is a new population based metaheuristic, which is improved version of Sine Cosine Algorithm (SCA) and uses the opposition based learning (OBL) for better exploration. Performance is analysed and compared with Particle Swarm Optimization (PSO), Differential Evolution (DE), Genetic Algorithm (GA), Ant Colony Optimization (ACO) and Evolution Strategy (ES) for eight different datasets.","PeriodicalId":153165,"journal":{"name":"2017 13th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Opposition-Based Sine Cosine Algorithm (OSCA) for Training Feed-Forward Neural Networks\",\"authors\":\"Divya Bairathi, D. Gopalani\",\"doi\":\"10.1109/SITIS.2017.78\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neural network is an effective machine learning technique for classification and regression. In recent studies many stochastic population based techniques are applied to train neural networks. In this paper, Opposition-Based Sine Cosine Algorithm (OSCA) is applied for feed-forward neural network (FNN) training. OSCA is a new population based metaheuristic, which is improved version of Sine Cosine Algorithm (SCA) and uses the opposition based learning (OBL) for better exploration. Performance is analysed and compared with Particle Swarm Optimization (PSO), Differential Evolution (DE), Genetic Algorithm (GA), Ant Colony Optimization (ACO) and Evolution Strategy (ES) for eight different datasets.\",\"PeriodicalId\":153165,\"journal\":{\"name\":\"2017 13th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 13th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SITIS.2017.78\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 13th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SITIS.2017.78","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

神经网络是一种有效的机器学习分类和回归技术。在最近的研究中,许多基于随机种群的技术被应用于神经网络的训练。本文将基于对立的正弦余弦算法(OSCA)应用于前馈神经网络(FNN)训练。OSCA是一种新的基于种群的元启发式算法,它是正弦余弦算法(SCA)的改进版本,并使用基于对立的学习(OBL)进行更好的探索。对粒子群算法(PSO)、差分进化算法(DE)、遗传算法(GA)、蚁群算法(ACO)和进化策略(ES)在8个不同数据集上的性能进行了分析和比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Opposition-Based Sine Cosine Algorithm (OSCA) for Training Feed-Forward Neural Networks
Neural network is an effective machine learning technique for classification and regression. In recent studies many stochastic population based techniques are applied to train neural networks. In this paper, Opposition-Based Sine Cosine Algorithm (OSCA) is applied for feed-forward neural network (FNN) training. OSCA is a new population based metaheuristic, which is improved version of Sine Cosine Algorithm (SCA) and uses the opposition based learning (OBL) for better exploration. Performance is analysed and compared with Particle Swarm Optimization (PSO), Differential Evolution (DE), Genetic Algorithm (GA), Ant Colony Optimization (ACO) and Evolution Strategy (ES) for eight different datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信