基于支持向量机的供应风险预测模型研究

Da-peng Meng, Chun-sheng Shi
{"title":"基于支持向量机的供应风险预测模型研究","authors":"Da-peng Meng, Chun-sheng Shi","doi":"10.1109/WISM.2010.34","DOIUrl":null,"url":null,"abstract":"As an effective method of machine learning, Support vector machine has been widely used in prediction. Proposition the supply of risk control and prevention, based on establishment evaluation index system and questionnaire to enterprise, this paper construct the supply risk prediction model and then discuss the fitting degree of model, expect to provide the basis for supply risk management.","PeriodicalId":119569,"journal":{"name":"2010 International Conference on Web Information Systems and Mining","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Research on the Prediction Model of Supply Risk Based on SVM\",\"authors\":\"Da-peng Meng, Chun-sheng Shi\",\"doi\":\"10.1109/WISM.2010.34\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As an effective method of machine learning, Support vector machine has been widely used in prediction. Proposition the supply of risk control and prevention, based on establishment evaluation index system and questionnaire to enterprise, this paper construct the supply risk prediction model and then discuss the fitting degree of model, expect to provide the basis for supply risk management.\",\"PeriodicalId\":119569,\"journal\":{\"name\":\"2010 International Conference on Web Information Systems and Mining\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Web Information Systems and Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WISM.2010.34\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Web Information Systems and Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WISM.2010.34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

支持向量机作为一种有效的机器学习方法,在预测中得到了广泛的应用。提出了供给风险的控制与预防,在建立评价指标体系和对企业进行问卷调查的基础上,构建了供给风险预测模型,并对模型的拟合程度进行了探讨,以期为供给风险管理提供依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on the Prediction Model of Supply Risk Based on SVM
As an effective method of machine learning, Support vector machine has been widely used in prediction. Proposition the supply of risk control and prevention, based on establishment evaluation index system and questionnaire to enterprise, this paper construct the supply risk prediction model and then discuss the fitting degree of model, expect to provide the basis for supply risk management.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信