神经对话与记忆机制

H. Yanagimoto, Shin Yoshida
{"title":"神经对话与记忆机制","authors":"H. Yanagimoto, Shin Yoshida","doi":"10.1109/iiai-aai53430.2021.00013","DOIUrl":null,"url":null,"abstract":"We propose a neural conversation system with memory mechanism to realize natural conversation exchanges considering the previous utterances. The neural conversation system consists of a Sequence-to-Sequence model and a memory mechanism. The Sequence-to-Sequence model can generate gramatically correct replies and the memory network can consider the previous utterances. The proposed method is trained with Cornell Movie-Dialog corpus and realize conversations between human and a; computer. We confirm that the proposed method can generate replies depending on the previous utterances but it is difficult to generate semantically correct utterances.","PeriodicalId":414070,"journal":{"name":"2021 10th International Congress on Advanced Applied Informatics (IIAI-AAI)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural Conversation with Memory Mechanism\",\"authors\":\"H. Yanagimoto, Shin Yoshida\",\"doi\":\"10.1109/iiai-aai53430.2021.00013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a neural conversation system with memory mechanism to realize natural conversation exchanges considering the previous utterances. The neural conversation system consists of a Sequence-to-Sequence model and a memory mechanism. The Sequence-to-Sequence model can generate gramatically correct replies and the memory network can consider the previous utterances. The proposed method is trained with Cornell Movie-Dialog corpus and realize conversations between human and a; computer. We confirm that the proposed method can generate replies depending on the previous utterances but it is difficult to generate semantically correct utterances.\",\"PeriodicalId\":414070,\"journal\":{\"name\":\"2021 10th International Congress on Advanced Applied Informatics (IIAI-AAI)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 10th International Congress on Advanced Applied Informatics (IIAI-AAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iiai-aai53430.2021.00013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 10th International Congress on Advanced Applied Informatics (IIAI-AAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iiai-aai53430.2021.00013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种具有记忆机制的神经会话系统,以实现考虑先前话语的自然会话。神经会话系统由序列到序列模型和记忆机制组成。序列到序列模型可以生成语法正确的回答,记忆网络可以考虑之前的话语。该方法采用Cornell Movie-Dialog语料库进行训练,实现了人与机器之间的对话;电脑。我们证实了该方法可以根据先前的话语生成应答,但难以生成语义正确的话语。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural Conversation with Memory Mechanism
We propose a neural conversation system with memory mechanism to realize natural conversation exchanges considering the previous utterances. The neural conversation system consists of a Sequence-to-Sequence model and a memory mechanism. The Sequence-to-Sequence model can generate gramatically correct replies and the memory network can consider the previous utterances. The proposed method is trained with Cornell Movie-Dialog corpus and realize conversations between human and a; computer. We confirm that the proposed method can generate replies depending on the previous utterances but it is difficult to generate semantically correct utterances.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信