T. Viitanen, M. Koskela, P. Jääskeläinen, J. Takala
{"title":"射线追踪管道的多边界体层次结构","authors":"T. Viitanen, M. Koskela, P. Jääskeläinen, J. Takala","doi":"10.1145/3005358.3005384","DOIUrl":null,"url":null,"abstract":"High-performance ray tracing on CPU is now largely based on Multi Bounding Volume Hierarchy (MBVH) trees. We apply MBVH to a fixed-function ray tracing accelerator architecture. According to cycle-level simulations and power analysis, MBVH reduces energy per frame by an average of 24% and improves performance per area by 19% in scenes with incoherent rays, due to its compact memory layout which reduces DRAM traffic. With primary rays, energy efficiency improves by 15% and performance per area by 20%.","PeriodicalId":242138,"journal":{"name":"SIGGRAPH ASIA 2016 Technical Briefs","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Multi bounding volume hierarchies for ray tracing pipelines\",\"authors\":\"T. Viitanen, M. Koskela, P. Jääskeläinen, J. Takala\",\"doi\":\"10.1145/3005358.3005384\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-performance ray tracing on CPU is now largely based on Multi Bounding Volume Hierarchy (MBVH) trees. We apply MBVH to a fixed-function ray tracing accelerator architecture. According to cycle-level simulations and power analysis, MBVH reduces energy per frame by an average of 24% and improves performance per area by 19% in scenes with incoherent rays, due to its compact memory layout which reduces DRAM traffic. With primary rays, energy efficiency improves by 15% and performance per area by 20%.\",\"PeriodicalId\":242138,\"journal\":{\"name\":\"SIGGRAPH ASIA 2016 Technical Briefs\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIGGRAPH ASIA 2016 Technical Briefs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3005358.3005384\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGGRAPH ASIA 2016 Technical Briefs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3005358.3005384","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi bounding volume hierarchies for ray tracing pipelines
High-performance ray tracing on CPU is now largely based on Multi Bounding Volume Hierarchy (MBVH) trees. We apply MBVH to a fixed-function ray tracing accelerator architecture. According to cycle-level simulations and power analysis, MBVH reduces energy per frame by an average of 24% and improves performance per area by 19% in scenes with incoherent rays, due to its compact memory layout which reduces DRAM traffic. With primary rays, energy efficiency improves by 15% and performance per area by 20%.